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Abstract

Postpyrogenic soil dynamics is an informative tool for studying soil elementary processes

in extreme temperature conditions and for predicting short time environmental changes in

conditions of catastrophic landscape changes. Soil organic matter (SOM) system evolution

is the most rapid process of postpyrogenic soil development. In this relation, the focus on

humus structure is important for understanding these important dynamics. Soil restoration

after spontaneous forest fires near Togljatty City (Samara Region, Russia) was abandoned

in 2010 and further  monitoring over the next  ten years was organised to evaluate the

speed of humus accumulation dynamics. The aim of this study was to apply the C-NMR

(nuclear magnetic resonance) spectroscopy to analyse the effect of forest fires on SOM

degradation in Scotch pine forests on Psamment Entisols of the fragmented steppe in the

Samara Region. Three key soil  plots were studied for estimating SOM quality changes

under the forest fire effect: surface forest fire, crown forest fire and control,  i.e. 18 soil

samples of top soil horizons were analysed in three replicates. The data obtained indicate

that  the  humus  molecular  composition  was  substantially  affected  by  the  wildfires.

Investigation of the humic acids’ (HAs) molecular structure by C-NMR showed a relative

increase in aromatic compounds and decrease in aliphatic ones. The aromaticity degree of

HA molecules increases in 5.7 and 3.8 times in cases of surface and crown forest fires,
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correspondingly. In general, crown and surface fires plots are not very different in terms of

C-NMR  spectra  of  HAs  (p  =  0.34);  however,  HAs  of  control  plot  have  essential

differences from pyrogenic ones (p < 0.05). C NMR spectra have shown a change in the

proportion  of  oxygen-containing  functional  groups  as  well.  One  of  the  most  important

effects  observed in  wildfire-affected SOM is  that  the proportion of  lignin-like  structures

increases as a concomitant effect of depletion of C,H-alkyl groups, especially in the case of

crown fires.

Keywords

C-NMR spectroscopy,  crown fire,  soil  cover,  soil  organic  matter  (SOM),  surface  fire,
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Introduction

Forest fire frequency is becoming increasingly relevant in the context  of  global  climate

change, with an observed trend of increasing natural forest fire frequency. The number of

postpyrogenic territories is increasing annually both in Russia and in the world; and not

only peat soils, but also mineral ones are burning. Forest fires play an important role in the

study  of  various  aspects  of  soil  degradation  due  to  their  specific  impact  on  the

environment. Fires are a powerful active ecological factor of modern soil formation. Any fire

impact affects both the chemical and biological soil characteristics; moreover, the impact

degree is closely related to the intensity of fire events. The pyrogenesis processes are a

widespread  phenomenon  that  has  a  huge  impact  on  soil  formation  processes,  which

makes us pay special attention to them when studying natural ecosystems.

The  effect  of  different  fire  intensity  on  SOM  is  a  complex  and  comprehensive  issue.

However, the effect of different types of fires on SOM is not fully understood. Summarising

previous scientific studies (Gonzalez-Perez et al. 2004, Maksimova and Abakumov 2015, 

Dymov and Gabov 2015, Miesel et al. 2015, Jimenez-Gonzalez et al. 2016, Masyagina et

al. 2016, Abakumov et al. 2017 etc.), it can be argued that, on the one hand, the humus

soil state undergoes certain changes as a result of fires and, on the other hand, there is

obviously no consensus on the processes that occur when fires affect the system of SOM.

Both simulation experiments under laboratory conditions and studies of  fires in  natural

environments that are cited in the classic generic literature on the effects of fire (Kang and

Sajjapongse 1980, Almendros et al. 1990, Fernandez et al. 2001, Sirotiak et al. 2021 etc.),

suggest that the effect of temperature is highly variable depending on the heating time, the

moisture of the soil and especially the soil depth. Therefore, modern science requires the

data  accumulation  on  postpyrogenic  changes  in  the  system  of  SOM  in  various

combinations of times and fire types.

For a deeper study of the fundamental processes of humus alteration after wildfires, it is

necessary to use modern high-precision instrumental methods (Beznosikov and Lodygin

2010, Lodygin et al. 2014). Various methods have been used to investigate the HAs of
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SOM in different ecosystems. One of the methods for studying the molecular composition

of organic matter is nuclear magnetic resonance (NMR), which enables the study of the

qualitative and quantitative characteristics of organic matter (Lodygin and Beznosikov 2010

, Ejarque and Abakumov 2016, Chukov et al. 2017, Lodygin et al. 2017). Using C–NMR

spectroscopy, we identify the proportion of aromatic compounds (Celi et al. 1997) in the

composition of HAs, to assess the stabilisation of organic matter in postpyrogenic soils.

The aim of this study was to discuss the factors that influence fire damage levels. In order

to achieve this goal, the following tasks were set: a) to demonstrate the application of the

C-NMR spectroscopy for comparison of the structural composition of the SOM from both

burned and unburned topsoils; b) to evaluate the stabilisation rate of postpyrogenic soils

and to analyse a soil degradation in dry Scotch pine forests resulting from forest fires; c)

moreover, one of the study objectives was to study in detail the changes in the properties

of organic matter and to detect the depth at which these changes manifest.

The  working  hypothesis  of  the  study  is  that  wildfires  in  sub-boreal  environments

significantly change molecular composition of the SOM and the depth of its changes is 4–5

cm.

Material and methods

C-NMR spectra of HAs isolated from the upper soil horizons affected by forest fires (in

2010) in Togljatty City, Samara Region, were analysed to study postpyrogenic changes of

SOM. Authors carried out monitoring studies of postpyrogenic soils in the forest-steppe

zone in the period from 2010 to 2020 using the example of Scotch pine forest in Togljatty

City (Maksimova et al. 2014, Maksimova et al. 2019).

Scotch pine forests (Pinus sylvestris L.) around Togljatty City are formed on sandy and

sandy loam deposits of eolian or alluvial origin in a subboreal climate. This is the territory of

the Stavropol  pine forest  (a former park zone between the Komsomolsky,  Central  and

Avtozavodsky Districts  of  the City,  near  the Institute  of  Ecology of  Volga Basin  of  the

Russian Academy of Sciences (53°29'43.80" N, 49°20'56.44" E, 179 m a.s.l.). Investigated

soil  type at  each study plot  was Psamment Entisols.  Soil  diagnostics were carried out

according to the "Classification and diagnostics of soils of Russia" (Shishov et al. 2004)

and the World Reference Base for Soil Resources, FAO 2015 (IUSS Working Group WRB

2015).

Postfire dynamics studies of soil cover were carried out in areas affected by surface and

crown forest fires in 2010: plot No. 1 - a middle-aged pine forest in Togljatty City (surface

fire was at the end of July 2010 – there was a burnout of the lower plant stratum with

partial damage to the stand); plot No. 2 - middle-aged pine forest in Togljatty City (crown

fire was at the end of July 2010 – there was a complete burnout of all vegetation); plot No.

3 – similar forest plots with the same soil type, but not subjected to forest fire (about 1 km

away from the pyrogenic effect) were used as control – the soils of natural scotch pine

forests. These three sampling scenarios were similar in terms of geology, topography, soil
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and vegetation before fire. Three soil pits were put in each study plot. In case of current

study, two top soil horizons were investigated: 18 soil samples of topsoils (Apir (0–10 cm)

and АY (10–15 cm)) were analysed in three replicates. The descriptions of the vegetation

and soil profiles, as well as the sampling procedures, were performed in accordance with

the common methodological  recommendations.  Soil  samples were air-dried and sieved

through a 1-mm sieve. The data presented in this paper are the analysis results of HAs'

spectra isolated from upper horizons of soil samples taken in 2019.

Humic substances isolation was carried out in accordance with the standard methods of

the International Humic Substances Society IHSS (http://www.humicsubstances.org/). HAs

were extracted from soil samples according to R.S. Swift (Swift 1996) modified by S.N.

Chukov et al. (Chukov et al. 2017). Briefly, humic acids were extracted from soil sample

(weight is 100 g) with 0.1 M sodium hydroxide (NaOH) solution (soil/solution ratio 1:10)

under  nitrogen  gas.  After  that,  the  solution  was  acidified  to  pH  1  and  the  HAs  were

separated by  centrifugation  at  high speed (>  15000 rpm) for  20 min.  Then HAs were

demineralised by shaking overnight in strong hydrogen fluoride (HF) solution (45%) and

washed with deionised water; after that they were freeze‐dried.

С-NMR spectra of HAs were obtained using a Bruker Avance 500 NMR spectrometer,

Billerica,  Massachusetts,  United States in  a  3.2  mm zirconium oxide (ZrO )  rotor.  The

magic angle rotation speed was 12 kHz. The repetition delay was 3 sec. The data of NMR

spectroscopy has been obtained from the “Center of Chemical Analyses and Materials and

Center  of  Magnetic  Resonance  Research”,  Scientific  Park  of  Saint-Petersburg  State

University.

C-NMR spectra analysis of HA powders from studied soils made it possible to identify the

ranges of  chemical  shifts  belonging to  carbon atoms of  various functional  groups and

molecular fragments of HAs (Emsley et al. 1965, Lodygin and Beznosikov 2010, Kholodov

et al. 2011, Lodygin et al. 2014, Chukov et al. 2017). Various molecular fragments were

identified including:

0–47 ppm – C, H-substituted aliphatic fragments;

47–60 ppm – methoxy and O, N-substituted aliphatic fragments;

60–105  ppm  –  aliphatic  fragments,  doubly  substituted  by  heteroatoms  (including

carbohydrate) and methine carbon of ethers;

105–144 ppm – C, H-substituted aromatic fragments;

144–164 ppm – O, N-substituted aromatic fragments;

164–183 ppm – carboxyl group, esters, amides and their derivatives;

183–204 ppm – quinone, aldehydes and ketones groups.
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The aromaticity degree was calculated as the sum of signals in the 105–164 and 164–183

ppm regions, while aliphatic compounds are characterised by the 0–105 and 183–204 ppm

regions (Kovalev and Kovaleva 2013, Lodygin 2016).

The following parameters were used in order to standardise the quantitative characteristics

of HAs' macromolecules: the ratio of the aromatic structures carbon to the aliphatic chains

carbon – Ar/AL (Lorenz et al. 2006) and a decomposition degree of SOM (C,H-alkyl/O,N-

alkyl) (Baldock and Preston 1995, Pedersen et al. 2011). Moreover, E.D. Lodygin (Lodygin

2016) has proposed an integral index of HAs' hydrophobicity (AL +AR ), which is the

total proportion of unoxidised carbon atoms (substituted by hydrogen or other atoms of

aliphatic  fragments),  which  makes  it  possible  to  indirectly  evaluate  the  amphiphilic

properties of SOM (Lodygin et al. 2014, Beznosikov et al. 2015).

Statistics. Data normal distribution was verified and a variance analysis (ANOVA) and post

hoc test (Fisher’s least significant difference) were performed. Differences were considered

significant at p < 0.05. Hierarchical clustering. Ward’s method. This analysis uses a method

of variance to estimate the distances between clusters.  Statistical  data processing and

analysis were carried out using standard methods in software packages MS Excel 2016,

Past (version 3.20), Statistica 64 (version 10).

Results

C-NMR spectra obtained from the isolated HA powders are shown at Figs 1,  2.  The

results are consistent with previously obtained information in this area (Almendros et al.

1992, Certini et al. 2011, Jimenez-Gonzalez et al. 2016) that the aliphatic part is the main

proportion in HAs' composition of natural soils, which is a typical zonal feature of SOM in

the forest-steppe zone, while as a result of fires, the aromaticity degree of HA molecules

increases significantly in  5.7  and 3.8  times in  cases of  surface and crown forest  fires

correspondingly (Abakumov et al. 2009).

In general, crown and surface forest fires plots do not differ in the C-NMR spectra of HAs

from the upper burnt Apir horizons; however, HAs of the control plot differ significantly from

pyrogenic ones (Table 1, Figs 1, 2). As a result of forest fires, the content of groups present

in lignins and methyl groups of aromatic and aliphatic carbon decreases and the content of

carbon atoms associated with oxygen, secondary alcohols, hydrocarbons and С,H-alkyl

and tetra-substituted carbon groups slightly decreases. However, the content of fragments

of C–C bonds, C,H-substituted aromatic carbon groups and aromatic carbon of phenolic

esters and phenols increases in postpyrogenic areas. These results are consistent with the

data  of  HAs'  elemental  analysis:  fires  cause  a  significant  loss  of  oxygen-containing

functional groups (due to their  effect on hydrophobicity,  retention of bases and, mainly,

colloidal  properties and solubility in humic substances) and an accumulation of a large

number of aromatic structures (Maksimova and Abakumov 2017).

The lowest concentration amongst all structural groups was characteristic for the carbonyl

group, which corresponds to the results by Rovira et al. (Rovira et al. 2012). The most

H,R H,R
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pronounced changes in the structural composition of HAs are associated with an increased

proportion  of  fragments  of  C–C  bonds,  alkylaromatic  compounds  and  C,H-substituted

aromatic carbon. A similar trend was established by Certini et al. (Certini et al. 2011) and

Knicker (Knicker 2007). Moreover, there is an increase of carboxyl groups after fires and a

slight decrease of aldehyde and ketone groups. A higher content of C3 and C5 syringyl

compounds and C3 and C4 guaiacyl compounds at the chemical shift of 153–148 ppm was

characteristic  for  surface  fire  more  than  in  the  case  of  crown  forest  fire  and  was

significantly  higher  than  the  control.  The  remaining  aromatic  carbon  signals,  including

lignin, were found between 140 and 110 ppm. This area shows the fragments content of

C–C bonds associated with aromatic compounds. A lignin transformation was revealed in

the  case  of  forest  fires,  especially  crown  fires,  that  can  be  recognised  in  the  O,N-

substituted aromatic region, although the signals of the methoxyl groups overlap with those

of the proteins. Changes in the ratio between C,H-substituted-to-O,N-substituted aromatic

C types are an important effect of fire. Moreover, quite visible in the spectra presented,

there is a decrease in the content of the following functional groups due to fire effect: 46–

64% less of carboxyl,  methoxyl/amide carbons (56 ppm), 25–35% and 49–64% less of

carbons in glucopyranoside rings in carbohydrate-derived structures (63 ppm (C6), 73 ppm

(C2,3,5), correspondingly). These are characteristic for all studied postpyrogenic samples,

except for the sub-superficial layer in the case of crown forest fire.

Figure 1. 

C-NMR spectra of the isolated HA powders in case of: surface fire.13
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Sample Aromatic % Aliphatic

%

Ar/

AL

AL +AR C,H-alkyl/O,N-

alkyl)

Control AY 38 62 0.60 65 0.84

Surface fire Apir 81 19 4.25 84 6,53

Surface fire AY 69 31 2.20 79 2.90

Crown fire Apir 74 26 2.83 83 2.70

Crown fire AY 43 57 0.75 74 3.65

Post hoc test Control – Surface fire p < 0.05

Post hoc test Control – Crown fire p < 0.05

Post hoc test Surface fire – Crown fire 0.34

Results of One way ANOVA, differences

between plots

F =

0.03401

p = 0.476

H,R H,R

Figure 2. 

C-NMR spectra of the isolated HA powders in case of: crown fire.13

Table 1. 

The aromatic and aliphatic proportion in HAs' molecules of studied soils.
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Therefore, the accumulation of aromatic compounds in humic substances is obvious after

wildfires, due to the relative decrease in the aliphatic part or, in some cases, due to a small

accumulation of carboxyl and carbonyl groups. The 126–129 ppm signal has often been

assigned  to  polyaromatic  hydrocarbons  (PAHs)  (Knicker  2007),  while  the  tendency  in

subsequent studies is to consider that, under standard acquisition conditions, C-NMR

does not distinguish between isolated aromatic rings or polycyclic compounds (Almendros

et  al.  2018).  However,  the signal  intensity  at  126–129 ppm has also been reported to

parallel the quantitative increase in PAHs content, which occurs as a characteristic effect of

wildfires (Maksimova et al. 2014).

It should also be noted that the radical re-arrangement of HAs' composition as a result of

forest fires concerns precisely the upper Apir layer, while the underlying layers, as a whole,

are more or less similar in spectra to the control. This mostly concerns the case of a crown

forest fire, where the two upper horizons differ significantly in HAs' composition in terms of

the aromaticity degree (Table 1). Therefore, below 10 cm, it is difficult to detect changes in

the properties of organic matter, no matter what type of fire and, therefore, how high the

temperature was.

The following parameters were used in order to standardise the quantitative characteristics

of HAs' molecules: the ratio of aromatic to aliphatic carbon (degree of decomposition of

organic matter) C-alkyl/O-alkyl and the integral index of HAs hydrophobicity (AL +AR )

(Fig. 3Table 1). The analysis of molecular composition integral indicators of SOM showed

that HAs of postfire plots are quite resistant to oxidation (including microbial) compared to

HAs of the control plot (Table 1). The total proportion of unoxidised carbon atoms in the

control case is about 65%, while for the postpyrogenic case, this indicator is noticeably

higher - 74–84%. The most hydrophobic are HAs of topsoils in postfire plots. Moreover,

HAs  are  characterised  by  a  decrease  in  the  degree  of  hydrophobicity  in  the  case  of

transition from organogenic topsoil to mineral horizons.

13
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Figure 3. 

Integrated indicators of HAs' molecular composition: 1 - surface fire Apir; 2 – surface fire AY; 3

– crown fire Apir; 4 – crown fire AY; 5 – control.
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The C,H-alkyl/O,N-alkyl ratio, which characterises the decomposition degree of SOM, is

maximum for postpyrogenic topsoils, especially for surface fire and ranges from 3.65 to

6.53, while ratio values in the case of the control plot are significantly lower at about 0.84.

This  indicator  sharply  decreases  when  moving  from organogenic  to  mineral  horizons,

which indicates a greater degree of destabilisation of the SOM in topsoil horizons.

Moreover,  we provided a  cluster  analysis  (Ward’s  method)  (Fig.  4)  in  order  to  identify

relationships  between the studied samples.  The following groups can be distinguished

according  to  this  figure:  from samples  1,  2  and  3;  samples  4  and  5.  The  first  group

characterises HAs formed in the upper and lower soil horizons in the case of surface and

crown forest fires. The second group is represented by control soils and the most similar to

them – lower soil horizon in the case of crown wildfire.

For  this  reason,  the C-NMR spectrum analysis  data show significant  changes in  the

structural organisation of organic matter as a result of pyrogenic transformation.

Conclusions

The  analysis  of  postpyrogenic  SOM  showed  that  the  humus  state  undergoes  certain

changes  during  forest  fires.  The  SOM  of  wildfires  and  control  plots  forms  rather

heterogeneous groups. The main difference in the heterogeneity degree of HA groups is an

increase of aromaticity degree (in 5.7 and 3.8 times in the cases of surface and crown

forest  fires,  correspondingly)  and  a  decrease  of  the  aliphatic  part  proportion  in  HAs'

molecules.  Moreover,  there  is  a  decrease  of  methoxy  and  O,N-substituted  aliphatic

13

Figure 4. 

Hierarchical clustering, based on the molecular composition of HAs (integration values of main

ranges areas of the C-NMR spectra). Ward’s method. Samples correspond to Fig. 3.13
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fragments after fires and a slight decrease of aldehyde and ketone groups. A significant

decrease in the content of carboxyl, methoxyl/amide carbons (46–64% less) and carbons

in glucopyranoside rings in carbohydrate-derived structures (25–64% less) was shown as a

result of fire effect. A higher content of syringyl compounds and guaiacyl compounds was

characteristic  for  the postfire area.  A lignin transformation was revealed in the case of

forest fires. Changes in the ratio between C,H-substituted-to-O,N-substituted aromatic C

types are an important effect of fire. These regularities are characteristic for all  studied

postpyrogenic samples, except for the sub-superficial layer in the case of crown forest fire.

Below 10 cm, it is generally difficult to detect changes in the properties of organic matter

according to C-NMR spectra, no matter what type of fire and, therefore, how high the

temperature was.

Therefore,  investigations  on SOM after  wildfires  can further  become a  part  of  postfire

monitoring system as an element of ecological management of degraded lands.
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