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Abstract

It is possible that model selection has been the most researched and most discussed topic

in the history of both statistics and structural equation modeling (SEM). The reason for this

is because selecting one model for interpretive use from amongst many possible models is

both essential and difficult. The published protocols and advice for model evaluation and

selection in SEM studies are complex and difficult  to integrate with current approaches

used in biology. Opposition to the use of p-values and decision thresholds has been voiced

by the statistics community, yet certain phases of model evaluation have been historically

tied  to  reliance on p-values.  In  this  paper,  I  outline  an approach to  model  evaluation,

comparison  and  selection  based  on  a  weight-of-evidence  paradigm.  The  details  and

proposed sequence of steps are illustrated using a real-world example. At the end of the

paper, I briefly discuss the current state of knowledge and a possible direction for future

studies.
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Introduction

Model selection is one of the more challenging aspects of structural equation modeling.

The  selection  decision  typically  follows  a  multi-step  process  of  model  evaluation  that

considers  numerous  possible  models  and various  types  of  evidence.  Traditionally,  this

process has depended strongly on the use of p-values and the concept of dichotomous

hypothesis  tests.  There have been numerous calls  from the statistics community  for  a

cessation of p-value-based hypothesis testing, especially as of late (see commentary by

Amrhein et al. (2019) in Nature Magazine). The present state of the methodology literature

may leave investigators with some uncertainty about how to use the information reported

by software packages so as to conduct model evaluation and selection. In this paper, I

suggest  an  approach  to  model  evaluation  in  SEM  that  weighs  multiple  sources  of

information to guide model selection, based on a ‘weight of evidence’ (WOE) paradigm. A

primary objective is to show how p-values may be used within a context in which they are

not  the  final  arbiters  of  model  selection  decisions.  The  presentation  focuses  on  SEM

conducted  using  traditional  global  estimation  methods  where  dealing  with  p-values  is

unavoidable  because  of  their  association  with  the  chi-square  global  fit  test.  A  basic

familiarity with the methodology is assumed in this presentation. For those interested in

these methods who need background information, accessible treatments include Grace

(2006), Kline (2016) and Shipley (2016).

When evaluating  models  estimated  using  traditional  methods,  there  are  two  instances

where SEM investigations encounter p-values:

1. associated with measures of global model fit and

2. associated with test statistics for individual parameters.

The likelihood-ratio Χ  test statistic was originally proposed as the first and final judge of

global  model  fit  (see  Tomer  (2003)  for  a  discussion  of  the  history).  There  are  dual

requirements within this tradition. The first was that the p-value associated with the model

Χ  statistic  should  be  >  0.05  to  signify  that  there  is  no  major  discrepancy  between

observed  and  model-implied  covariances.  The  second  requirement  was  that  all  links

retained in a model should meet the expectation that removal of any one of them would

result in an increase in the Χ  statistic > 3.84, the single-degree of freedom criterion value

associated with p = 0.05.

Throughout the modern history of SEM, which can be thought of as the time since the

LISREL synthesis in the early 1970s (Jöreskog 1970), there have been concerns about the

use of p-values. A central concern that arose early in the history of SEM comes from the

fact that, because Χ  = (n-1)*F , where F  is the magnitude of the maximum likelihood

discrepancy function, a finding of global mis-fit  is very sensitive to the size of the data

sample. This sensitivity means that dichotomous determinations of model adequacy and

parameter significance are not properties of the system, but instead, properties of the size

of  the  sample  in  hand.  For  this  reason,  SEMers  have  for  decades  sought  alternative

approaches to model comparison and evaluation (discussed below).

2

2

2

2
ml ml

2 Grace J



Within  the  field  of  ecology,  Burnham and  Anderson  (2002)  have  championed  the

replacement  of  p-value-based  dichotomous  hypothesis  tests  with  model  comparisons,

based on information measures such as the Akaike Information Criterion (AIC). There has

been  some  resistance  to  the  idea  of  shifting  away  from  p-value-based  dichotomous

significant testing (Murtaugh 2014; Burnham and Anderson 2014) and, at present, we see

plenty  of  uses  of  both  approaches.  Nonetheless,  the  use  of  model  comparisons  and

multimodel inference is now perhaps the dominant paradigm in ecology. This is certainly

not the case in all scientific disciplines. In the health sciences, for example, there is a major

emphasis on exposure-response studies and for  these,  classic  group-difference testing

commonly relies on p-value-based significance tests.

Shifting  away from a  strict  reliance  on  dichotomous hypothesis  testing  towards  model

comparisons has implications for  model  selection in  SEM studies.  Results  reported by

SEM software includes p-value-based indices. Experience tells us that p-values are useful

indicators  of  model-data  relations,  but  today's  general advice  is  to  not  use  them  for

dichotomous significance testing. In this paper, I illustrate an approach to model evaluation

and  selection  that  utilises  p-values  as  information,  while  basing  model  selection  on  a

comparison of the total weight of evidence. I first discuss the types of evidence that might

be considered, including the role for expert knowledge. Second, I propose a sequence of

steps  to  follow.  Third,  I  illustrate  the  proposed  process  using  an  ecological  example.

Finally,  I  briefly  consider  the challenges facing the quest  for  a single “best”  index and

possibilities for resolution of this issue.

Types of Evidence that can be Considered in Model Evaluation

There are numerous types of evidence to be weighed when evaluating and comparing

models. First and foremost is the scientific knowledge of the investigative team.

The Role of the Investigator in Model Evaluation and Selection

As an explanatory method, SEM requires the scientist to play an active role in the model

evaluation process. A priori  scientific  knowledge is essential  for  the construction of  the

initial  models.  However,  there may be a  tendency for  those beginning to  use SEM to

imagine that model evaluation, based on the data, is a tightly-scripted process defined by

the rules of statistics. Earlier treatments of SEM tend to reinforce this impression. This is

perhaps true of my own writing (e.g. comparing the presentations in Grace 2006 to the

current paper), but also the writing in more general treatments of SEM (Kline 1998, 1

Edition compared to Kline 2016, 5  Edition). Some of the shift in recommendations reflects

a broader shift in the view of the role of p-values and strict hypothesis tests. Experience

with SEM applications to real-world problems also teaches us that the exercise of scientific

judgement is an essential part of model evaluation.

The goal of model selection is not simply to describe the relationships in data. In my view,

the goal is to balance twin objectives. First is the narrow task of evaluating the model-data

inter-relationships. We must address the specific question, “What do these data say about
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the hypothesis?” SEM philosophy, however, imagines a sequence of studies and a process

of  sequential  learning  (Grace  and  Irvine  2020).  Our  initial  model  for  each  analysis

represents an accumulation of knowledge from prior investigations. The evidence obtained

from  the  analysis  then  updates  our  understanding  with  new  information.  We  should

assume, I feel, that there will be additional studies to follow that will test and strengthen our

understanding. This looking forward motivates us to a second objective, which is to select

a final model in this study that can serve to help us construct the initial model for the next

study. These twin objectives motivate us to balance the reliance on empirical evidence in

the current data sample against theoretical knowledge about the underlying mechanisms.

Here, I describe more specifically the role of the scientist, as this topic is rarely covered in

explicit fashion (e.g. Larson and Grace 2004; Grace and Irvine 2020.

Evidence Type #1: A Priori Scientific Knowledge

The initial model construction process in SEM relies heavily on investigator knowledge.

The reasoning process adopted during model construction (Grace and Irvine 2020) needs

to  be  maintained  during  model  evaluation  as  well.  It  will  not  always  be  necessary  to

explicitly  consider  alternative  models. There  is  an  aspiration  in  SEM  that,  through

sequential  studies,  one  will  reach  a  confirmatory  stage  where  new  data  may  refine

estimates, but not change our minds about the causal structure of the hypothesis. This

paper  addresses  the  more  typical  case  where  model  refinements  are  proposed  and

competing models considered.

A Need to Support and Defend Critical Assumptions – There is a certain minimum amount

of a priori knowledge that is required in order to use SEM. SE models include so-called

“untestable” assumptions, along with assumptions that can be falsified by an appropriate

dataset. The most fundamental untestable assumptions are the directions of the arrows.

Often,  in  ecological  studies,  the investigator  is  able to justify  arrow directionality.  More

challenging  is  for  investigators  to  justify  things  that  are  omitted  from their  models.  Of

course, models must limit their scope to the essential components. There are rules relating

to what can and cannot be omitted. First, only include variables that are essential to the

modeling  objectives.  Often  scientists  attempt  to  include  all  measured  variables  and

produce models whose complexity exceed the capacity of the data sample size (too many

parameters per sample).  Second, omitting variables that have strong effects on two or

more  of  the  variables  of  primary  interest  can  lead  to  confounding.  When  very  strong

confounding relationships are omitted, they have the potential to bias conclusions.

For  links  not  included  in  the  initial  model,  post-estimation  evaluations  should  reveal

whether  these  assumptions  need  to  be  reconsidered.  For  direct  links,  these  are

straightforward to detect and include. However, we should not ignore the possibility that

errors  will  be  non-independent.  Correlated  errors  are  definite  indications  of  omitted

confounders. Finding error correlations may spark a need to consider model modifications.

It is wise to consider how one might interpret such findings based on a priori knowledge, as

these represent factors being omitted from explicit inclusion in the initial model.
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Investigator’s Opinion of the Strength of Theory versus Strength of Data – A point that is

rarely  discussed outside of  the sphere of  Bayesian statistics  is  how to  weight  a  priori

scientific knowledge against the information content of a data set. This omission exists

despite  the  fact  that,  in  many  ecological  studies,  analyses  are  based  on  very  limited

samples. In cases where there is a large and representative dataset for use in an analysis,

one should be prepared to  consider  the data-derived estimates as the final  arbiter  for

drawing  inferences.  In  some cases,  our  a  priori  knowledge may be  stronger  than the

dataset available for modeling.

A broad view of the quantitative sciences must recognise that we aspire for our models to

transition  over  time  from  assumption-testing  to  assumption-based.  Numerous  sub-

disciplines  within  ecology  rely  on  assumption-based  models.  So-called  ‘mechanistic

models’ incorporate processes that operate on biological systems with enough regularity

that the form of the model is accepted as given and data are used purely to estimate the

parameters. Population models often fall into this group. For this model type, some of the

processes may be of known functional form, while others may be of unknown form. When

studying multi-species ecological communities, we often encounter mechanisms that are

contingent  on  so many  factors  that  relationship  forms cannot  be  taken  as  given  (e.g.

effects of species additions or removals; Smith and Knapp 2003).

The  preceding  material  is  presented  to  make  two  important  points  relevant  to  model

evaluation and selection within SEM. First, when alternative models are suggested, based

on empirical results, we should avoid constructing alternative models for consideration that

we know are false representations of the system. Perhaps a birth rate estimate is low and

its 95% confidence interval includes a value of zero. Do we prune the model to adhere to

the principle of parsimony? That would mean we might end up presenting a final model

that,  by omission, suggests that births are not a contributing factor for population size.

Scientific  logic would suggest  that  we should not  prune in this case,  but  what are the

consequences? I will address this question in the context of our illustrative example in the

section below. In summary, the rule I would suggest is for the investigator to not include

models in your comparison set that you, as a scientist, are not willing to defend.

Evidence Type #2: P-values

Historically, the use of p-values came into widespread use as a part of the machinery for

null-hypothesis testing. P-values have traditionally been used for dichotomous decision-

making and have been central to the practical application of statistical methods. Within a

WOE paradigm, p-values can be used as continuous quantitative indicators without their

being used as strict cutoffs. The case for this type of use of p-values has been recently

articulated by McShane et al. (2019) who argue, “We propose that the p-value be demoted

from its threshold screening role and instead, treated continuously, be considered ... as just

one among many pieces of evidence.”

As  mentioned  in  the  Introduction,  for  SEM  applications  that  utilise  global  estimation

methods (e.g. LISREL, Mplus, AMOS or lavaan), model estimation returns an initial set of

measures that quantify the overall correspondence between observed and model-implied
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covariances. Immediate focus is directed to the Χ  statistic, summarising model-data fit

and  its  p-value.  The  p-value,  in  this  case,  has  a  counter-intuitive  meaning  in  that  it

represents the probability that the observed data deviate from model expectations, which

would imply the model structure is inappropriate for obtaining estimates from the data.

When conducting SEM, there is an immediate decision that has to be made after the initial

model  is  estimated,  which is  to  decide whether  there are one or  more important  links

omitted. If there are, the reported parameter estimates are not to be trusted. This need to

make sure the network is not missing important links has led to a history of reliance on

dichotomous  decision-making  and  this  is  perhaps  unavoidable.  The  next  section  will

discuss alternative indices for global fit assessment, but regardless of the fit index used,

the question still arises, “Should we keep the original model or create a more complete one

before we proceed?”

Evidence Type #3: Global Fit Judged by Approximate Fit Indices

There are a number of factors that limit our ability to provide an omnibus model evaluation

using  the  Χ  statistic.  For  example,  the  continuous  increase  in  statistical  power  with

increasing N (sample size) of course means appreciable differences between data and

model could be missed when N is small, but trivial differences could be flagged when N is

large. Additionally, it is well documented that the Χ  statistic can hide various types of mis-

specification simply because it is a summary statistic for the entire model (Steiger 2007).

As a result of these problems, a great many alternative measures of global model fit have

been proposed and evaluated.

Kline (2016) provides an overview of the approximate fit indices developed for SEM. Most

of these are not proper for use in significance tests, but continuous measures of model-

data correspondence. That said, the urge to perform model sufficiency testing has led to

various  attempts  to  create  thresholds  for  approximate  fit  indices  (e.g.  Hu  and  Bentler

1999).  Kline  (2016)  places  approximate  fit  indices  into  three  primary  categories,  (1)

absolute fit, (2) comparative fit and (3) parsimony-adjusted. Information metrics like AIC,

which are technically model comparison measures, are discussed as a separate topic in a

later section.

Regarding approximate fit indices, it is probably true that some are, on average, better than

others. However, simulation studies indicate that the capacity to detect mis-specifications

based on recommended thresholds depends on the particular mis-specification (Marsh et

al. 2004). Some authors have even suggested such indices and associated thresholds not

be used at all (Barrett 2007), while other suggest they do have a role to play (Mulaic 2009).

The current practice amongst SEM users, particularly those in the social sciences using

latent variable models, has come to be pluralistic and individualistic, with each investigator

potentially  relying  on  a  unique  combination  of  pieces  of  evidence.  The  fundamental

problem with  the approaches considered is  that  there is  no clear  way to  combine the

different types of evidence.

Under the WOE approach, I will demonstrate in this paper approximate fit indices can be

useful measures to report. Kline (2016) suggests the following should be reported: (a) the
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Root Mean Square Error of Approximation (RMSEA) and its 90% confidence interval, (b)

the Comparative Fit  Index (CFI) and (c) the Standardized Root Mean Square Residual

(SRMR).  Simulation  studies  have  shown  that  none  of  these  indices  is  sufficient  for

detecting all  types of mis-specifications. Each provides some quantification of evidence

nonetheless and a description of how they are judged is presented below.

Evidence Type #4: Modification Indices and Residual Relationships

The second phase in evaluating models after first examining global fit measures is often to

search  for  indications  of  what  changes  could  be  made  to  improve  model-data

concordance. Specially designed for this purpose are so-called modification indices (MI).

All  global-estimation-based  software  packages,  with  which  I  am  familiar,  report  this

information upon request. The critical role of the investigator’s scientific judgement comes

into sharp focus once one tries to make sense of the MI table provided for a model that is

mis-specified.

MI values are expressed in terms of the drop in the Χ  statistic that would be observed if a

link were added to the model. The categories of possible additions include, (a) regressions,

(b)  latent  variable  loadings,  (c)  error  correlations  and  (d)  variance  constraints.  The

modification indices are not arrived at by actually fitting alternative models. Rather, they are

approximations  and  therefore  do  not  always  correspond  to  the  changes  that  will  be

observed.

Perhaps the best way to gain some intuition about the challenge MI values attempt to

overcome is to look at the raw materials for computing evidence of mis-specification, which

are the residuals. In this case, the residuals are not those between predicted and observed

individual  data values,  but  instead,  between the observed and model-implied variance-

covariance matrices. Requesting to see residuals in a standardised metric will  illustrate

where model-implied and observed matrices are most discrepant. Because As the parts of

a model are intercorrelated, there are many different model changes that might be implied.

From a very  practical  standpoint,  the investigator  must  realise  that  any change in  the

model can potentially resolve many of the listed modification possibilities. Therefore, one

should decide on a single addition to the model before re-estimation. It is essential that the

chosen modifications make substantive sense, because they must explain to the reviewers

the scientific basis for the modifications of their initial model (see Grace 2006 for an in-

depth discussion of this issue).

When  working  with  models  having  latent  variables  with  multiple  indicators,  MI  tables

sometimes return no usable advice, even though global model fit is poor. In this case, it

becomes essential to consult the residual matrix unless theoretically predefined alternative

specifications are available. While matrices of residuals provide a more undistilled source

of  information,  they  are  commonly  a  fundamental  source  of  evidence  for  selecting

alternative models for consideration.

2
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Evidence Type #5: Information Measures - AIC and BIC 

As with all other types of fit measures, information-based measures have a long history of

use in SEM. This is a complex topic that I will treat lightly because the jury is still out on

whether  universally-applicable  recommendations  are  even  possible.  Also  Complicating

things is also the sheer variety of information metrics that have been proposed for use.

Fortunately,  a recent review of  past  studies and set  of  simulation studies by Lin et  al.

(2017) provide a basis for summarising the topic for SEM users.

Two types of information measures have captured most of the recommendations, AIC-type

indices and BIC-type indices. The Akaike Information Criterion (AIC) was proposed for use

in 1974 (Akaike 1974), while Schwarz (1978) proposed a Bayesian alternative (BIC). In

Burnham and Anderson (2002), the foundational arguments were laid out for using AIC

within a multimodel inference system as a replacement for p-value-based null hypothesis

testing. Much discussion of this index and comparisons with other approaches, including

BIC, have taken place and a concise summary of the discussion can be found in Brewer et

al.  2016)  and Aho et  al.  2014).  The result  of  all  this  attention  has  led  to  widespread

adoption  of  information-based  multimodel  comparisons  in  the  natural  sciences.  The

separate history of discussion of the same issues amongst SEM practitioners has led to a

distinct body of literature where practices and recommendations vary widely. One lack of

overlap relates to the sample-size corrected version of AIC, known as AICc. Since it is not

theoretically justified for multivariate models, it has not been included in SEM studies. For

univariate models, it has been shown to outperform AIC under small sample sizes and is

the default index for many studies in the natural sciences.

In their book, Burnham and Anderson (2004) suggest models separated by more than 2

AIC units could be seen as distinct, while later (Burnham et al. 2011), they suggest 4-7

units might be a better criterion. As I will show below, multimodel inference should use the

full set of models evaluated for summarising the evidence for any one of the set.

In this paper, I do not wish to attempt to propose a definitive answer to the question of

which  information  index  is  best  nor  consider  the  detailed  studies  and  arguments

association with that question. My intent is to show how the various types of evidence,

associated with SEM, can be used to build up a set of candidate models for comparison

and how information measures can be used to assist in the comparisons. For that purpose,

I will rely on the following synoptic view, taken from various sources.

The relative performance of different information measures has been shown to vary with a

number of factors, including (a) sample size, (b) the composition of candidate model sets,

(c) the magnitude of effects to be detected and (d) heterogeneity in the data. I will try to

summarise  our  current  understanding  (and  my  own  experience)  in  a  few  summary

statements:

1. The behaviour of AIC versus BIC indices can be anticipated by the fact that the

latter group imposes stronger penalties for model complexity. Variant types of AIC

(e.g. Consistent AIC - CAIC) and of BIC (e.g. Haughton's BIC - HBIC and sample-
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size adjusted BIC -ABIC) all have different types of behaviour. The performance of

different indices depends strongly on the above factors. There is no single indicator

that is superior across all assumptions and conditions.

2. There  are  two key  questions  for  the  investigator  to  consider  that  influence the

guidance to take home from simulation studies. First, is the true data-generating

process complex and with tapering effect sizes? Second, is it likely that not all the

important variables in the true model are in your candidate models?

3. If you answer yes to both questions in number 2, AIC and ABIC are perhaps the

best choices up to N = 400. Above that, HBIC is a good choice.

4. If your answer to only the first question is yes, AIC remains a consistent performer

up to N = 300, but ABIC is not as consistent.

Evidence Type #6: d-separation Tests

In  this  paper,  my  focus  is  on  globally-estimated  models  where  the  investigator  must

contend with  multiple  forms of  evidence encountered within  a  sequential  evaluation of

overall model fit and individual links included in the model. However, many investigators

use  local  estimation  methods  (e.g.  Lefcheck  2016). For  this  reason,  I  briefly  describe

methods for d-separation (d-sep) testing here. Further, Kline (2016) (Chapter 11) discusses

the potential for including evidence from local fit  indicators, such as d-sep tests, in the

evaluation of globally-fit models.

Pearl’s redescription of SEM in foundational terms, referred to as the Structural Causal

Model (Pearl 2000), includes the proposal that the testable implications of models can be

expressed in terms of d-separation tests. Shipley (2000) subsequently developed formal d-

sep tests that could be used for empirical evaluation of conditional independence claims in

recursive path models. Initially, Shipley’s test statistic was based on p-values, which were

used in conjunction with the testing of individual independence claims. They were also

used in developing an overall test statistic, the C score, which is a function of the sum of p-

values across the entire set of independence claims evaluated.

In 2013, Shipley subsequently developed a version of his method based on AIC (Shipley

2013). He demonstrated that, for a set of equations whose parameters are estimated using

maximum likelihood, the C statistic equates to a maximum likelihood quantity as long as

null  probabilities,  from  which  a  C statistic  is  computed,  are  maximum-likelihood

probabilities. Fulfilling this requirement makes it possible to compute AIC from a C score.

He went on to show how to apply the AIC statistic to model comparisons based on d-sep

criteria.

Most recently, Shipley and Douma (2019) have revisited the use of AIC in conjunction with

locally-estimated model comparisons. They pointed out that the “d-sep AIC”, which is the

name they  suggested  for  their  original  computation,  only  captures  evidence  contained

within the conditional independence tests and not within the entire model. To remedy this

limitation,  they  developed  a  “full-model  AIC”  that  takes  into  account  both  the  causal

topology of the model and the parameter estimates.

A 'Weight of Evidence' approach to evaluating structural equation models 9



Proposed Sequence for a Weight-of-Evidence Approach to Model

Evaluation and Selection

The use of  the  above-described types of  evidence is  illustrated  next.  To  assist  in  the

process, I provide a sequence of steps for a weight-of-evidence approach.

1. Consideration of Sample Size - The first piece of evidence to consider is the number

of samples, N. Sample size has a huge influence on model evaluation. One can anticipate

a great deal about the value of various model fit indices based on sample size. A first-cut

distinction is often made between studies depending on whether N is less than or greater

than 200. Other sample size distinctions may be informative to the investigator based on

their  past  experience,  as  well  as  other  factors  such  as  model  complexity  and  model

specification details.

2. Examination of Model Χ  Statistic, Model Degrees of Freedom and associated P-

value –  Below  a  sample  size  of  200,  the  Χ  statistic  and  associated  p-value  are

informative. That said, the criterion of p > 0.05 is known to be imprecise. When N < 200, a

p-value falling below the 0.05 threshold is a strong indication that one should consider

alternative models that include additional links. Above the 0.05 criterion, increasing values

of p provide increasing support for the presumption that the model under consideration is

not leaving out links representing important processes. It is common to find support for

adding links when p > 0.05. Based on personal experience, we might think of some much

larger  value,  such as 0.50,  as a point  at  which any omitted links are likely  weak,  but

additional pieces of information are nearly always worth examining unless p is quite high.

Above a sample size of 200, one can expect to need to use Approximate Fit Indices to

convince reviewers that the model is not leaving out important links and thus suitable for

interpretation.

3. Examination of Select Approximate Fit Indices – As mentioned above, Kline (2016)

suggests reporting certain Approximate Fit Indices.

a.  The Root Mean Square Error  of  Approximation (RMSEA)  is  appealing because it  is

accompanied by upper and lower values for a 90% confidence interval. The RMSEA differs

from the Χ  statistic as it measures departures from approximate/close fit instead of perfect

fit. "Approximate" or "close" fit is described as the situation where the Χ  < df, while perfect

fit is where Χ  = 0. The RMSEA is scaled as a "badness of fit" measure, where 0 means

perfect fit. The index is known to be a poor decision criterion by itself. That said, when the

lower confidence interval is 0, it  is supposed to mean that approximate fit  is within the

range of support offered by the data. When the associated p-value is less than 0.05, it

suggests some type of misfit (due to omitted linkage).

b. The Comparative Fit Index (CFI) compares the departure from close fit (just described)

to what we would find for a null model (all parameters = 0.0). Its values are scaled to range

from 1.0 to 0. It is widely reported by investigators, especially when N > 200, because it is

completely unaffected by sample size. It is not a reliable index for model selection by itself

(though the unscaled version, RNI – the Relative Noncentrality Index) has been shown to

2
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perform as well as AIC by Bollen et al. (2014). Hu and Bentler (1999) have suggested a

criterion of CFI > 0.95, though this is probably overly restrictive when N < 200 because of

the limited power to detect effects.

c. The Standardized Root Mean Square Residual (SRMR) is computed as the absolute

value of the mean of the standardised residual covariances. A value of 0 means perfect fit

and a value > 0.10 is of  concern.  To interpret  this measure appropriately,  it  is  best  to

examine the matrix of standardised residual covariances since adequate mean fit may hide

specific deviations representing important mis-specifications.

4.  Examination of  Modification Indices and Covariance Residuals –  The matrix  of

covariance residuals provides the raw materials used to compute overall model fit, as well

as modification indices. Their examination is sometimes an important supplement to the MI

table. The MI values themselves are expressed in terms of the drop in the Χ  statistic that

would be expected if a link were added to a model. The categories of possible additions

include,  (a)  regressions,  (b)  latent  variable  loadings,  (c)  error  correlations  and  (d)  the

relaxation of constraints (e.g. if  any parameters have been given fixed values). As any

given covariance residual  can be resolved in  several  different  ways,  it  is  important  to

consider the scientific interpretability before examining the MI table. For example, in this

paper we are not considering latent variable models.  For this reason, we may want to

request  only  a  subset of  the  MI  types,  such  as  direct  effects  (~)  and  possibly  error

correlations (~~). The single-degree-of-freedom Χ  criterion value of 3.84 is often used to

provide  information  on  the  interpretation  of  MI  values. The  use  of  this  information  is

considered in the next section.

5.  Considering  Alternative  Models  Containing  Additional  Linkages/Parameters –

Unless overall model fit is very close, it is desirable to consider alternative models. Failing

to  find  a  credible  alternative  model  is  itself  a  form  of  support  for  the  model  under

consideration. It is critical that all alternative models estimated be scientifically plausible.

The entire foundation for multimodel comparisons is based on the premise that all models

compared are scientifically defensible. One simple tip is to consider in advance the signs

(positive or negative) of links added to a model. At the point of examining modification

indices, it is possible to not only examine the magnitude of the MI, but also the sign of the

expected  parameter.  Interpretation  of  added  coefficients  can  be  very  dependent  on

whether  the sign of  the coefficient  corresponds to the type of  mechanisms suggested.

Sometimes, the expected parameter change (“epc”) is of opposite sign to the mechanistic

interpretation for adding a link and this may influence how the investigator proceeds. When

considering MI values in terms of their magnitudes, the investigator should recognise that it

is only profitable to make one addition to a model at a time. Making a single change to a

model can lead to a completely different set of MI values for the remaining omitted links

under consideration. It is common to focus on the suggested modifications with the largest

MI values, though the interpretability of suggested changes is of paramount importance.

The investigator will usually notice several possible modifications that are projected to have

identical effects on model fit. I will elaborate the logic to employ in such a situation in the

context of our empirical example.

2
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6. Repeat of Steps 1 – 5 as needed – When a link or additional parameter is added to

form a new model, the steps just described will need to be repeated. At this point in the

process, we are ignoring the second-level question of whether the included links (freely

estimated parameters) in a model are supported. The inclusion of weak or non-supported

effects in models has only a minor effect on overall model fit because they always reduce

the raw discrepancy and only impact the model Χ  statistic by increasing the number of

parameters being estimated (K). As omitted links can have large effects on model fit and

on  estimated  values  for  the  other  parameters,  I  always  recommend  addressing  the

question of whether important processes are omitted from the model before worrying about

simplification.

7. Model Simplification – The model simplification process addresses the question of

whether there is empirical support for all of the included linkages. The reported statistics for

individual  parameters  now  come  into  play.  Historically,  the  p-values,  associated  with

individual  parameters,  have  been used  as  guideposts, but  not  for  deciding  whether  a

parameter should be set to zero. It has long been the practice within SEM under global

estimation  to  use  p-values  as  a  continuous  quantitative  measure  of  the  variability

associated with a parameter estimate. Finding a parameter estimate with a p-value at or

above 0.05 raises the question as to what magnitude of change would be seen in global

model fit if that parameter were set to zero (i.e. removing a link). The standard approach

has been to use a single-degree-of-freedom Χ  test to judge whether a link should be

removed. Under a WOE paradigm, p-values at or above 0.05 suggest the construction of

alternative models to evaluate, using multi-model comparison.

8. Selection of Candidate Models for Comparison – The approach, described thus far,

encourages a liberal  consideration of  alternative models,  under  the provision that  they

represent valid competing scientific explanations. A single model for scientific inference

purposes is to be selected from the set. The suggestion of model averaging, proposed by

Burnham  and  Anderson  (2002),  has  been  shown  to  be  inappropriate  for  interpretive

science  based  on  both  statistical  (Cade  2015)  and  scientific  (Grace  and  Irvine  2020)

grounds.

9. Model Comparison, Weighing of Evidence and Model Selection – Model selection,

based on multimodel comparisons using information criteria, as championed by Burnham

and Anderson (2002),  provides an appealing framework for  use in  a  WOE process.  A

detailed description of  multimodel  comparison is  not  provided here,  but  its  use will  be

illustrated in the next section. In addition to the quantities mentioned in this section are the

types of scientific expert judgement described previously. Since AIC difference categories

have been described in terms of the concept of model equivalency, the framework readily

integrates  different  forms  of  evidence  and  allows  the  investigator  to  judge  the

consequences of selecting any model other than the one with the lowest metric value.

2
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An Ecological Example

To illustrate the ideas presented in this paper,  I  will  rely on an example related to the

biological control of invasive plants. The invasive plant Euphoria esula (leafy spurge) is

considered a threat to the ecological and economic integrity of grasslands in the north-

central United States. The example, presented here, is derived from a study conducted at

the  Theodore  Roosevelt  National  Park  in  North  Dakota  (Larson  and  Grace  2004).

Following establishment of spurge in the Park in the 1970s, a biocontrol programme was

initiated  in  the  1980s.  Prior  to  the  study  described here,  there  were  more  than 1,800

releases  of  two  flea  beetle  species,  both  of  which  are  obligate  feeders  on  spurge,

throughout the Park. In 1999, permanent plots were established for the monitoring of plant

and beetle density dynamics.

In  this  paper,  I  have  used  the  results  published  by  Larson  and  Grace  (2004)  to

demonstrate a WOE approach. In order to base illustrations on a “known” situation, the

published SEM model was adopted as the “true” model and published parameter estimates

were used to simulate a large sample (N = 10,000), which was converted to a variance-

covariance matrix. The development of a large-sample covariance matrix allows me to use

a single representative dataset and then specify a real-world sample size for illustrative

purposes.  A WOE approach to model  evaluation is  illustrated below by starting with a

naïve, initial model similar to the one used by the investigators in the original study.

Fig. 1 represents the initial hypothesis used in this illustration. Table 1 provides summary

information related to the mechanisms encoded in the figure. Knowledge of plant biology

suggested that the change in stems between year0 and year1 would depend on the initial

stem density in year0 (Fig. 1, link 1). Since areas where the invasive plant had already

established  were  the  object  of  study,  the  possibility  of  self-thinning  (negative  density

dependence) was considered most likely. A bit of information about the life-cycle of the flea

beetles  helps  to  explain  other  parts  of  the  proposed  model.  The  flea  beetles  feed

exclusively on spurge and live on the plant except when they disperse as adults. In the

autumn, females lay eggs at,  or just below, the soil  surface, near the bases of stems.

Newly-hatched larvae burrow into the soil  and begin feeding on very small  plant roots.

Larvae feed on progressively larger roots and root buds as they develop. After the larvae

overwinter,  they resume feeding on plant roots until  they pupate in late spring or early

summer. Once the larvae pupate, the adult flea beetles emerge from the soil and feed on

the plant’s foliage and flowers throughout the growing season, dispersing then as adults.

Based on the life cycle, the investigators hypothesised that the numbers of adult beetles

should be greatest in plots with the highest numbers of plant stems in the current year due

to the resources provided to the adults (Fig. 1, links 2 and 7). It was also hypothesised by

the investigators?  that  beetle  population  densities  could  be  related  to  the  food supply

provided to larvae in the preceding winter, representing a lag effect (Fig. 1, links 5 and 10).

Some degree of year-to-year spatial fidelity was expected (Fig. 1, links 3 and 8), while a

potential for competitive effects between beetle species was considered (Fig. 1, links 6 and

11).  Finally,  if  biocontrol  agents  were  effective  at  controlling  plant  populations,  it  was
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hypothesised that plant densities would decline over time faster where beetle densities

were greatest (Fig. 1, links 4 and 9).

Link

#

Description of potential mechanisms and expected sign of effect

1 Change in stem density is expected to depend on initial density of stems. A positive parameter estimate

would indicate positive density dependence, while a negative parameter estimate would indicate negative

density dependence (negative effect).

2 Dependence of flea beetle density on plant stem density for BioA. (positive effect)

3 Site fidelity for BioA. (positive effect)

4 Effect of BioA on StemChg (expecting a negative effect, if control agent is effective)

5 Lag food effect on BioA. (positive effect)

6 Competitive effect of BioA on BioB. (negative effect)

7 Dependence of flea beetle density on plant stem density for BioB. (positive effect)

8 Site fidelity for BioB. (positive effect)

9 Effect of BioB on StemChg (expecting a negative effect, if control agent is effective)

10 Lag food effect on BioB. (positive effect)

11 Competitive effect of BioB on BioA. (negative effect)

 

Table 1. 

Description of ecological linkages numbered in Fig. 1

Figure 1. 

Structural equation model representing an initial hypothesis regarding the potential effects of

two biocontrol flea beetles, BioA (Aphthona nigriscutus) and BioB (Aphthona lacertosa), on an

invasive plant (Euphorbia esula). Stem and beetle densities were measured over two years

and the change in stem density between years 1 and 2 computed (StemChg12).
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For  the  illustration  below,  I  simulated  10,000  replicates  using  the  lavaan  package

simulateData function and then captured the covariance matrix as input for illustrations.

The illustrations in this paper assume a sample size of  150 (original  investigation was

based on 165 samples). Code used for data simulation is in the supplementary materials

(Suppl. material 1).

Illustration of a WOE Approach using the Biocontrol Example

In this section, I follow the Proposed Sequence described above to illustrate its application.

In this example, I start with a single proposed a priori model and work from there. In other

cases, we might have multiple candidate models from the beginning to evaluate, which

would modify the sequence slightly.

Model 1

Model 1 (Fig. 1) provides our starting point for the selection of a explanation for the data.

Covariance matrix input and Model 1 code are in Table 2.

### load libraries

library(lavaan)

########## Simulation Study #1 ##########

# Covariance matrix for input

sim.cov <- '

1.2472

-0.1492 1.019

0.8442 -0.178 1.6417

0.0358 0.704 0.0357 1.5512

-0.2922 -0.233 -0.1217 -0.5276 1.488

0.5235 0.149 0.5335 0.3277 -0.655 1.029'

# Convert matrix and name variables

sim.cov.dat <- getCov(sim.cov, names = c("BioA1", "BioB1", "BioA2",

"BioB2", "StemChg12", "Stems1"))

##### Scenario 1 - Set N=150 #####

### mod1 – initial model

mod1 <- '

# regressions

BioA1 ~ Stems1

BioB1 ~ Stems1

BioA2 ~ BioA1 +Stems1 +BioB1

BioB2 ~ BioB1 +Stems1 +BioA1

StemChg12 ~ Stems1 +BioA2 +BioB2 '

Table 2. 

Code for estimating Model 1 (Fig. 1) using lavaan.
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# Estimate model ‘mod1’ using data matrix ‘sim.cov.dat’, N = 150

Mod1.fit <- sem(mod1, sample.cov = sim.cov.dat, sample.nos = 150)

> summary(mod1.fit, fit.measures=T)

lavaan 0.6-5 ended normally after 15 iterations

Estimator ML

Optimisation method NLMINB

Number of free parameters 16

Number of observations 150

Model Test User Model:

Test statistic 9.125

Degrees of freedom 4

P-value (Chi-square) 0.058

Model Test Baseline Model:

Test statistic 247.786

Degrees of freedom 15

P-value 0.000

User Model versus Baseline Model:

Comparative Fit Index (CFI) 0.978

Tucker-Lewis Index (TLI) 0.917

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -1274.742

Loglikelihood unrestricted model (H1) -1270.179

Akaike (AIC) 2581.483

Bayesian (BIC) 2629.654

Sample-size adjusted Bayesian (BIC) 2579.017

Root Mean Square Error of Approximation:

RMSEA 0.092

90 Percent confidence interval - lower 0.000

90 Percent confidence interval - upper 0.173

P-value RMSEA <= 0.05 0.153

Standardized Root Mean Square Residual:

SRMR 0.055

Table 3. 

Global fit statistics obtained for Model 1.
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Estimation of Model 1, using lavaan, returns the measures of overall model fit shown in

Table 3. We can see that lavaan converged rapidly and without warnings. My discussion of

results will follow the proposed sequence of examinations described above.

1. Consideration of Sample Size – Since N = 150, all of the fit measures presented can

be interpreted in a fairly straightforward fashion.

2. Examination of Model Χ  Statistic, Model Degrees of Freedom and associated P-

value –While the p-value returned is above the criterion of 0.05, it can be anticipated at a

sample size of 150 that we have sufficient statistical power to detect modest effect sizes.

For this example, it is appropriate to assume that the true model contains a wide range of

effect strengths, including some of scientific interest, but of modest size. With a p-value of

0.058, it would be naïve to simply accept this model without looking any further.

3. Examination of Select Approximate Fit Indices –

a. RMSEA is below 0.10, the lower CI boundary is 0.0 and associated p-value is 0.153. All

these values suggest approximate fit.

b. CFI is estimated to be 0.978, which implies that we are probably not missing any large

effects (assuming no interactions, as I do for this illustration).

c. SRMR is 0.055, well below the warning level of 0.10.

d.  Summary:  This evidence suggests that  when model-data discrepancies are average

across the whole model,  there is reasonable correspondence. However, this level of fit

could be the result of averaging many equal-sized minor mis-specifications OR averaging

many areas of the model with very close fit and a few important model-data mismatches.

The limitation of global fit measures is their inability to distinguish these two possibilities.

Examination of Modification Indices and Covariance Residuals – For now, I forego

presenting a matrix of standardised residual covariances as their interpretation requires

some experience. My typical process is to first examine modification indices and work with

those, resorting to an examination of residuals, if it seems necessary. Seven modification

suggestions are returned in this case (Table 4). Immediately one recognises that the MI

value is identical for all of the suggested changes. All the suggested changes involve the

densities of species A, species B or both at time 1. In fact, changes 1, 2 and 5 suggest

adding a link between BioA1 and BioB1. Changes 3, 4, 6 and 7 are suggestions to add

effects  pointing  from  time  2  to  time  1,  which  are  not  scientifically  plausible.  So,  the

modifications  suggest  we  consider  what  kind  of  process  could  jointly  influence  the

abundances of species A and B at time 1 (other than dependence on stem density). The

expected parameter  change values for  the set  of  changes under  consideration are  all

negative. This means we should be thinking of processes that could cause a negative

association  between  the  two  species  at  the  beginning  of  the  study.  The  investigators

imagined  several,  including  (a)  different  establishment  histories  for  the  two  biocontrol

agents within the landscape sampled, (b) different habitat preferences or (c) some previous

interaction between the species, such as competition. All of these mechanisms would best

2
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be represented by an error correlation between BioA1 and BioB1. This alternative model

(Model 2) is shown in Fig. 2 and was fitted to the data for further evaluation (step 5).

> # Modification Indices

> subset(modindices(mod1.fit), mi > 2, c("lhs", "op", "rhs", "mi", "epc"))

lhs op rhs mi epc

1 BioA1 ~~ BioB1 7.762 -0.224

2 BioA1 ~ BioB1 7.762 -0.226

3 BioA1 ~ BioA2 7.762 1.723

4 BioA1 ~ BioB2 7.762 -0.341

5 BioB1 ~ BioA1 7.762 -0.229

6 BioB1 ~ BioA2 7.762 -0.414

7 BioB1 ~ BioB2 7.762 -12.411

Model 2

Fig. 2 represents our new model for evaluation. The modified lavaan codes is shown in

Table 5. To consider the evidence in support of this model,  we must estimate the new

model and repeat the proposed sequence of steps. Less explanation is needed for the

second model evaluation, so I condense steps.

 

Table 4. 

Modification indices for Model 1.

Figure 2. 

Model 2, which includes an error correlation between species A and B at time 1 (parameter

12).
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### Model 2 (parameter numbers correspond to those in Fig. 5)

mod2 <- '

# regressions

BioA1 ~ b2*Stems1

BioB1 ~ b7*Stems1

BioA2 ~ b3*BioA1 +b5*Stems1 +b11*BioB1

BioB2 ~ b8*BioB1 +b10*Stems1 +b6*BioA1

StemChg12 ~ b1*Stems1 +b4*BioA2 +b9*BioB2

# error covariance

BioA1 ~~ b12*BioB1'

Steps 2-5: Examination of Global Fit Measures and Consideration of Additions to

Model 2 – The Χ  dropped from 9.125 to 1.155 (a decline of 8.03) and its p-value rose

from 0.058 to 0.764 (Table 6). The RMSEA estimate is now 0.0 and CFI is estimated at 1.0,

while SRMR shrunk from 0.055 to 0.013. Since the new Χ  is well below 3.84, there is not

enough remaining model-data discrepancy to  justify  any further  additions at  this  point.

Therefore, there is no reason to examine modification indices for this revised model. It is

worth noting that AIC dropped from 2629.654 to 2575.513, a decline of 54.141, a decisive

magnitude of improvement.

> summary(mod2.fit, fit.measures=T)

lavaan 0.6-3 ended normally after 16 iterations

Optimisation method NLMINB

Number of free parameters 17

Number of observations 150

Estimator ML

Model Fit Test Statistic 1.155

Degrees of freedom 3

P-value (Chi-square) 0.764

Model test baseline model:

Minimum Function Test Statistic 247.786

Degrees of freedom 15

P-value 0.000

User model versus baseline model:

Comparative Fit Index (CFI) 1.000

Tucker-Lewis Index (TLI) 1.040

Loglikelihood and Information Criteria:

2

2

Table 5. 

Code for estimating Model 2. Parameters are now labelled b1-12.

Table 6. 

Global fit statistics obtained for Model 2.
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Loglikelihood user model (H0) -1270.757

Loglikelihood unrestricted model (H1) -1270.179

Number of free parameters 17

Akaike (AIC) 2575.513

Bayesian (BIC) 2626.694

Sample-size adjusted Bayesian (BIC) 2572.892

Root Mean Square Error of Approximation:

RMSEA 0.000

90 Percent Confidence Interval 0.000 0.093

P-value RMSEA <= 0.05 0.848

Standardized Root Mean Square Residual:

SRMR 0.013

Step 7: Considering Simplification for Model 2 – We now turn to judging support for the

links included. The information reported by lavaan that is most helpful at this point are the

statistics associated with individual parameters. These are presented in Table 7. There are

18 parameters listed, one of which is treated as fixed (the variance of Stems1). Stems1 is

our only exogenous variable. In lavaan, exogenous variances are assumed to be those in

the observed variance-covariance matrix by default, though that default can be relaxed. As

for the rest of the parameters, we should, at this point, consider whether the signs of the

parameters correspond to hypothesised mechanisms associated with those parameters.

Based on Table 1, we expect negative effects for links 4, 6, 9 and 11 and positive effects

for links 2, 3, 5, 7, 8 and 10. Link 1 could be either positive or negative, depending on the

stage of establishment of the plant population. In this instance, we expect link 1 to capture

negative density dependence, but the data will be the final determinant since there is no

theoretical guarantee. The coefficients in Table 7 do not all conform to expectations. The

most notable exception is for link 4 in Model 2. Parameter b4 is positive and its p-value

suggests (based on experience) some degree of support. Importantly, link 4 is one of the

parameters in our model of greatest interest relative to the question of whether biocontrol is

being successful. The same parameter for the other biocontrol species (b9) is seen to be

negative with a p-value of 0.002, conforming to expectations. At this point, we must decide

how to proceed and the investigators, involved in the original study, chose to create a new

model for further examinations.

> # For examination of individual parameter support

> parameterEstimates(mod2.fit)

lhs op rhs label est se z pvalue ci.low ci.up

1 BioA1 ~ Stems1 b2 0.509 0.080 6.382 0.000 0.353 0.665

2 BioB1 ~ Stems1 b7 0.145 0.080 1.801 0.072 -0.013 0.302

Table 7. 

Parameter-specific statistics for Model 2.
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3 BioA2 ~ BioA1 b3 0.554 0.085 6.496 0.000 0.387 0.721

4 BioA2 ~ Stems1 b5 0.256 0.094 2.718 0.007 0.071 0.440

5 BioA2 ~ BioB1 b11 -0.131 0.085 -1.549 0.121 -0.297 0.035

6 BioB2 ~ BioB1 b8 0.662 0.085 7.834 0.000 0.497 0.828

7 BioB2 ~ Stems1 b10 0.213 0.094 2.266 0.023 0.029 0.397

8 BioB2 ~ BioA1 b6 0.018 0.085 0.217 0.828 -0.149 0.186

9 StemChg12 ~ Stems1 b1 -0.643 0.091 -7.077 0.000 -0.821 -0.465

10 StemChg12 ~ BioA2 b4 0.139 0.069 2.005 0.045 0.003 0.275

11 StemChg12 ~ BioB2 b9 -0.208 0.067 -3.078 0.002 -0.340 -0.075

12 BioA1 ~~ BioB1 b12 -0.224 0.082 -2.717 0.007 -0.385 -0.062

13 BioA1 ~~ BioA1 0.974 0.113 8.660 0.000 0.754 1.195

14 BioB1 ~~ BioB1 0.991 0.114 8.660 0.000 0.767 1.215

15 BioA2 ~~ BioA2 1.008 0.116 8.660 0.000 0.780 1.236

16 BioB2 ~~ BioB2 1.008 0.116 8.660 0.000 0.780 1.236

17 StemChg12 ~~ StemChg12 0.968 0.112 8.660 0.000 0.749 1.187

18 Stems1 ~~ Stems1 1.022 0.000 NA NA 1.022 1.022

Model 3

A new model for evaluation is presented in Fig. 3. The lavaan code is given in Table 8.

### Model 3 (parameter b4 now estimates an error correlation)

Mod3 <- '

# regressions

BioA1 ~ b2*Stems1

BioB1 ~ b7*Stems1

BioA2 ~ b3*BioA1 +b5*Stems1 +b11*BioB1

BioB2 ~ b8*BioB1 +b10*Stems1 +b6*BioA1

StemChg12 ~ b1*Stems1 +b9*BioB2

# error covariance

BioA1 ~~ b12*BioB1

StemChg12 ~~ b4*BioA2'

Steps 2-5: Examination of Global Fit Measures and Consideration of Additions to

Model 3 – The fit statistics for Model 3 are similar to those for Model 2, but with even

closer fit (full results not presented to economise on space). The Χ  is now 0.133 and p-

value = 0.988. All other fit statistics suggest there are no other important links missing from

this model.

Step 7: Considering Simplification for Model 3 – We now turn to an examination of the

parameter-specific statistics for Model 3 (Table 9). For model simplification, we now look at

2

Table 8. 

Code for estimating Model 3.
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the parameters with the least support (highest p-values). As always, we do not make model

modifications we do not  wish to defend later.  Parameter labels now correspond to the

numbered links in Fig. 3. Parameter b6 has the highest p-value, 0.828, which suggests

very  weak  support  for  that  process.  This  parameter  represents  an  effect  of  BioA1 on

BioB2, which was considered to be an open question at the beginning of the analysis. The

a priori hypotheses being considered is that species A has a competitive effect on species

B,  which  would  anticipate  a  negative  effect.  The  returned  estimate  is  near  zero  and

positive. All results suggest we should remove this link from our model, yielding Model 3B

(Fig. 4).

> # For examination of individual parameter support

> parameterEstimates(mod3.fit)

lhs op rhs label est se z pvalue ci.low ci.up

1 BioA1 ~ Stems1 b2 0.509 0.080 6.382 0.000 0.353 0.665

2 BioB1 ~ Stems1 b7 0.145 0.080 1.801 0.072 -0.013 0.302

3 BioA2 ~ BioA1 b3 0.551 0.084 6.573 0.000 0.387 0.716

4 BioA2 ~ Stems1 b5 0.257 0.094 2.747 0.006 0.074 0.441

5 BioA2 ~ BioB1 b11 -0.133 0.084 -1.594 0.111 -0.297 0.031

6 BioB2 ~ BioB1 b8 0.662 0.085 7.834 0.000 0.497 0.828

7 BioB2 ~ Stems1 b10 0.213 0.094 2.266 0.023 0.029 0.397

8 BioB2 ~ BioA1 b6 0.018 0.085 0.217 0.828 -0.149 0.186

9 StemChg12 ~ Stems1 b1 -0.565 0.083 -6.786 0.000 -0.729 -0.402

10 Stemchg12 ~ BioB2 b9 -0.224 0.067 -3.332 0.001 -0.355 -0.092

 
Figure 3. 

Model 3, with link from BioA1 to BioB2 removed.

Table 9. 

Parameter-specific statistics for Model 3.
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11 BioA1 ~~ BioB1 b12 -0.224 0.082 -2.717 0.007 -0.385 -0.062

12 BioA2 ~~ StemChg12 b4 0.181 0.083 2.184 0.029 0.019 0.344

Model 3B, Step 7: Considering Simplification for Model 3B – Model 3B was created by

removing link 6 from Model 3. This is done by setting parameter b6 to zero (Table 10). We

now re-examine p-values for those showing weak support (Table 11). We now see that

parameter b11 has a p-value of 0.111. Parameter b11 corresponds to the link in Fig. 4 from

BioB1 to BioA2. As with parameter b6, which we already fixed to zero, with link 6 we are

looking for evidence of a cross-year competitive effect of species B on species A. It  is

entirely possible for competition to be asymmetric, so failing to find the effect of species A

on B (b6 set to zero) does not automatically preclude an effect of B on A (b11). Still, in this

case, setting b11 to zero seems like the next step, which leads to a model that is simplified

further, Model 3C (not shown, but presented in Suppl. material 1).

### Model 3B (parameter b6 now set to zero)

Mod3B <- '

# regressions

BioA1 ~ b2*Stems1

BioB1 ~ b7*Stems1

BioA2 ~ b3*BioA1 +b5*Stems1 +b11*BioB1

BioB2 ~ b8*BioB1 +b10*Stems1 +b6*BioA1

StemChg12 ~ b1*Stems1 +b9*BioB2

# error covariance

BioA1 ~~ b12*BioB1

StemChg12 ~~ b4*BioA2

# set parameters to zero

b6 == 0'

 
Figure 4. 

Model 3B.

Table 10. 

Code for estimating Model 3B.
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> # For examination of individual parameter support

> parameterEstimates(mod3B.fit)

lhs op rhs label est se z pvalue ci.low ci.up

1 BioA1 ~ Stems1 b2 0.509 0.080 6.382 0.000 0.353 0.665

2 BioB1 ~ Stems1 b7 0.145 0.080 1.801 0.072 -0.013 0.302

3 BioA2 ~ BioA1 b3 0.551 0.084 6.573 0.000 0.387 0.716

4 BioA2 ~ Stems1 b5 0.257 0.094 2.747 0.006 0.074 0.441

5 BioA2 ~ BioB1 b11 -0.133 0.084 -1.594 0.111 -0.297 0.031

6 BioB2 ~ BioB1 b8 0.658 0.082 7.993 0.000 0.497 0.820

7 BioB2 ~ Stems1 b10 0.223 0.082 2.723 0.006 0.063 0.384

8 BioB2 ~ BioA1 b6 0.000 0.000 NA NA 0.000 0.000

9 StemChg12 ~ Stems1 b1 -0.565 0.083 -6.786 0.000 -0.729 -0.402

10 StemChg12 ~ BioB2 b9 -0.224 0.067 -3.332 0.001 -0.355 -0.092

11 BioA1 ~~ BioB1 b12 -0.224 0.082 -2.717 0.007 -0.385 -0.062

12 BioA2 ~~ StemChg12 b4 0.181 0.083 2.184 0.029 0.019 0.344

Model  3C,  Step  7:  Considering  Simplification  for  Model  3C –  We  now  direct  our

attention to Table 11 and parameter b7, the effect of Stems1 on BioB1, which has a p-value

of 0.072. Here, we encounter a parameter with marginal empirical support but with very

strong theoretical support. The investigators (Larson and Grace 2004) made the decision

to leave this link in all models because knowledge of the biology and evidence from the

field, guarantee that the biocontrol beetles depend on the abundance of the invasive plant.

Both data and field observations (as well as subsequent studies with longer time courses,

Larson et al. (2008)) confirm this process, but contribute to an understanding of how the

dynamics of beetles induces substantial variability in the measured association. Later, I will

show the consequences of retaining b7 as a free parameter (or setting it to zero) for other

model parameter estimates. This will give the reader a feel for what retaining a weakly-

supported link implies. For now, we leave link 7 to be freely estimated and look further at

the output. The only remaining parameter with marginal support is b4, the error correlation

between BioA2 and StemChg12 (p = 0.031). This level of support is usually indicative of

support for retaining a link. To evaluate this expectation, I estimated one additional model,

Model 3D, in which b4 == 0. Results for Model 4 show no signs of mis-specification and no

obvious opportunities for justifiable modifications. This completes our process of creating

alternative models.

Step 8: Selection of Candidate Models for Comparison

In  this  situation,  we  must  decide  which  of  the  models  that  have  been  estimated  are

scientifically defensible. Model 1 was found to be obviously mis-specified due to lack of

Table 11. 

Parameter-specific statistics for Model 3B.
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empirical support and is not a contender for model selection. Model 2, while exhibiting a

close model-data fit, was found to lack theoretical support for the originally hypothesised

effect of BioA2 on StemChg12. Model 3 was created to solve that problem. Subsequent

models examined (Models 3B-D) were all attempts to evaluate simpler versions of Model 3

and are all  scientifically defensible. The appropriate model comparison set in this case

includes all versions of Model 3.

Step 9: Model Comparison, Weighing of Evidence and Model Selection

A model comparison table is presented in Table 12. There are two models that are virtually

identical, Models 3B and 3C. This means the choice is up to the scientists to justify. This

observed result could be interpreted as support for an effect of BioB1 on BioA2 (Model 3B),

though certainly any such effect is weak and variable. Table 13 provides details. Parameter

b11 is negative, consistent with theoretical expectations and has a two-tailed p-value of

0.111. Biologically, the debated process is potentially important because it may be that one

of the species is a superior biocontrol  agent and introducing a less effective biocontrol

agent that competes with the first mentioned should be considered. The authors of the

original study included this link (actual sample size was slightly larger and support slightly

stronger, though scientific interest was the final determinant). Results for Model 3B are

presented in Table 13.

> ##### Multimodel Comparisons

> library (AICcmodavg)

> aictab(list(mod3.fit, mod3B.fit, mod3C.fit, mod3D.fit),

+ c("MOD3", "MOD3B","MOD3C","MOD3D"))

Model selection based on AICc:

K AICc Delta_AICc AICcWt Cum.Wt LL

MOD3B 16 2576.63 0.00 0.39 0.39 -1270.27

MOD3C 15 2576.64 0.01 0.39 0.77 -1271.53

MOD3D 14 2579.03 2.40 0.12 0.89 -1273.96

MOD3 17 2579.13 2.50 0.11 1.00 -1270.25

Model Fit

Estimator ML

Model Fit Test Statistic 0.180

Degrees of freedom 4

P-value (Chi-square) 0.996

Table 12. 

Model comparison table.

Table 13. 

Select results for model selected for interpretation, Model 3B.
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Comparative Fit Index (CFI) 1.000

RMSEA 0.000

90 Percent Confidence Interval 0.000 0.000

P-value RMSEA <= 0.05 0.998

SRMR 0.006

Regressions:

Estimate Std.Err z-value P(>|z|) Std.all

BioA1 ~

Stems1 (b2) 0.509 0.080 6.382 0.000 0.462

BioB1 ~

Stems1 (b7) 0.145 0.080 1.801 0.072 0.146

BioA2 ~

BioA1 (b3) 0.551 0.084 6.573 0.000 0.481

Stems1 (b5) 0.257 0.094 2.747 0.006 0.204

BioB1 (b11) -0.133 0.084 -1.594 0.111 -0.105

BioB2 ~

BioB1 (b8) 0.658 0.082 7.993 0.000 0.534

Stems1 (b10) 0.223 0.082 2.723 0.006 0.182

BioA1 (b6) 0.000 0.000

StemChg12 ~

Stems1 (b1) -0.565 0.083 -6.786 0.000 -0.470

BioB2 (b9) -0.224 0.067 -3.332 0.001 -0.228

Covariances:

Estimate Std.Err z-value P(>|z|) Std.all

.BioA1 ~~

.BioB1 (b12) -0.224 0.082 -2.717 0.007 -0.227

.BioA2 ~~

.StmChg12 (b4) 0.181 0.083 2.184 0.029 0.181

R-Square:

Estimate

BioA1 0.214

BioB1 0.021

BioA2 0.381

BioB2 0.346

StemChg12 0.328
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Further Results for Selected Model, Model 3B

Additional summary results for the selected model are shown in Table 13. Included are

both  the  standardised  parameter  estimates  and  the  R-squares.  Often  standardised

parameter  estimates are presented and used for  conveying model  findings.  I  refer  the

reader to the original paper (Larson and Grace 2004), if they have a deeper interest in the

example.

A question raised earlier in the paper was about the consequences of retaining a weakly-

supported link in a model for the other model parameters. It is known that leaving out an

important link can have a major impact on estimated parameter values for the included

links. This sensitivity is illustrated by the fact that model Χ  can drop abruptly when a single

link is added (we observed a drop of over 8 points when we added link 12 to create Model

2). The elimination of link 6 from Model 3, however, only increased model Χ  by a tiny

amount (0.05), which is typical when parameters with little support are removed. More to

the  point  in  this  paper  is  the  question  of  what  would  happen  if  we  were  to  set  the

dependence of beetle species B on plant stems (parameter b7) to zero? The results from

such a change are presented in Table 14. Model fit  measures increase noticeably,  but

overall fit remains good. Comparing standardised parameter estimates to those in Table 13

shows the only non-trivial change is for the parameter set to zero (drops from 0.15 to 0.0).

All other parameter estimates are very close to the same values as before.

Model Fit

Estimator ML

Model Fit Test Statistic 3.390

Degrees of freedom 5

P-value (Chi-square) 0.640

Comparative Fit Index (CFI) 1.000

RMSEA 0.000

90 Percent Confidence Interval 0.000 0.092

P-value RMSEA <= 0.05 0.793

SRMR 0.050

Regressions:

Estimate Std.Err z-value P(>|z|) Std.all

BioA1 ~

Stems1 (b2) 0.541 0.078 6.974 0.000 0.485

BioB1 ~

Stems1 (b7) 0.000 NA 0.000

2

2

Table 14. 

Results if b6 in Model 3B were to be set to zero (compare to results in Table 13).
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BioA2 ~

BioA1 (b3) 0.551 0.084 6.573 0.000 0.481

Stems1 (b5) 0.257 0.093 2.769 0.006 0.201

BioB1 (b11) -0.133 0.083 -1.610 0.107 -0.104

BioB2 ~

BioB1 (b8) 0.658 0.081 8.079 0.000 0.541

Stems1 (b10) 0.223 0.081 2.752 0.006 0.184

BioA1 (b6) 0.000 0.000

StemChg12 ~

Stems1 (b1) -0.565 0.082 -6.903 0.000 -0.474

BioB2 (b9) -0.224 0.067 -3.343 0.001 -0.227

Covariances:

Estimate Std.Err z-value P(>|z|) Std.all

.BioA1 ~~

.BioB1 (b12) -0.228 0.083 -2.743 0.006 -0.230

.BioA2 ~~

.StmChg12 (b4) 0.181 0.083 2.184 0.029 0.181

R-Square:

Estimate

BioA1 0.235

BioB1 0.000

BioA2 0.397

BioB2 0.327

StemChg12 0.316

Summary Thoughts and Future Directions

In this paper, I describe a way to bring the necessary evaluation of p-values into what is

ultimately  a  model  comparison  process.  The  advice  provided  from main-stream SEM,

which is very heavily influenced by the study of complex latent variable models, is both

exhaustive  and  exhausting  for  the  ecologist.  This  paper  provides  updated  advice  for

practitioners who rely on global estimation software packages for their SEM analyses.

At the present time, the greatest challenge for future studies is to provide defensible advice

for the use of information measures in model comparisons. Most researchers investigating

this  topic  have  sought  to  identify  a  single  index  for  all-purpose use.  The most  visible

discussions in the field of ecology have debated the use of AIC versus BIC. There are also

a great many variants of AIC and BIC that have been developed and discussed. For those

in ecology, the recent simulation study by Lin et al. (2017) is perhaps most instructive. It is

undeniable at the present time that the ideal information measure for model comparisons
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varies, depending on the assumptions you make about the complexity of the underlying

true data-generating process, the sample size, the strengths of effects of interest and other

properties of the data. I expect a decision tree or matrix of recommendations will be the

ultimate  solution,  though  certainly  there  are  advanced  approaches  being  studied  (e.g.

Brewer et al. 2016).

The presentation here would be incomplete without mentioning that the ultimate solution to

selecting the best model involves the data itself  and not the methods of  analysis.  The

bigger and better the sample, the more confidence we may have in the conclusions. If our

goal  is  to  generalise  beyond  the  current  sample,  there  is  no  substitute  for  sound

mechanistic knowledge and sequential learning across linked studies (Grace and Irvine

2020).

Acknowledgements 

I  thank  Lori  Randall,  USGS,  Maria  Felipe-Lucia,  Helmholtz  Center  for  Environmental

Research and Frank Pennekamp, University of Zurich, for helpful review comments and

suggestions.  This  work  was  supported  by  the  USGS  Land  Change  Science  and

Ecosystems Programs. Any use of trade, firm or product names is for descriptive purposes

only and does not imply endorsement by the U.S. Government.

Hosting institution

U.S. Geological Survey

Conflicts of interest

No conflicts of interest.

References

• Aho K, Derryberry D, Peterson T (2014) Model selection for ecologists: the worldviews

of AIC and BIC. Ecology 95: 631‑636. https://doi.org/10.1890/13-1452.1 

• Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on

Automatic Control 19: 716‑723. https://doi.org/10.1109/TAC.1974.1100705 

• Amrhein V, Greenland S, McShane B (2019) Scientists rise up against statistical

significance. Nature 567: 305‑307. https://doi.org/10.1038/d41586-019-00857-9 

• Barrett P (2007) Structural equation modelling: Adjudging model fit. Personality and

Individual Differences 42: 815‑824. https://doi.org/10.1016/j.paid.2006.09.018 

• Bollen K, Harden J, Ray S, Zavisca J (2014) BIC and alternative Bayesian information

criteria in the selection of structural equation models. Structural Equation Modeling 21:

1‑19. https://doi.org/10.1080/10705511.2014.856691 

A 'Weight of Evidence' approach to evaluating structural equation models 29

https://doi.org/10.1890/13-1452.1
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1038/d41586-019-00857-9
https://doi.org/10.1016/j.paid.2006.09.018
https://doi.org/10.1080/10705511.2014.856691


• Brewer MJ, Butler A, Cooksley SL (2016) The relative performance of AIC, AICC and

BIC in the presence of unobserved heterogeneity. Methods in Ecology and Evolution 7:

679‑692. https://doi.org/10.1111/2041-210X.12541 

• Burnham K, Anderson D, Huyvaert K (2011) AIC model selection and multimodel

inference in behavioral ecology: some background, observations, and comparisons.

Behavioral Ecology and Sociobiology 65: 23‑35. https://doi.org/10.1007/

s00265-010-1029-6 

• Burnham K, Anderson D (2014) P values are only an index to evidence: 20th-vs. 21st-

century statistical science. Ecology 95: 627‑630. https://doi.org/10.1890/13-1066.1 

• Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer

Publishers, New York, NY, USA.

• Cade BS (2015) Model averaging and muddled multimodel inferences. Ecology 96:

2370‑2382. https://doi.org/10.1890/14-1639.1 

• Grace J (2006) Structural Equation Modeling and Natural Systems. Cambridge

University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511617799 

• Grace JB, Irvine KM (2020) Scientist’s guide to developing explanatory statistical

models using causal analysis principles. Ecology e02962. https://doi.org/10.1002/ecy.

2962 

• Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis:

Conventional criteria versus new alternatives. Structural Equation Modeling 6: 1‑55. 

https://doi.org/10.1080/10705519909540118 

• Jöreskog KG (1970) A general method for analysis of covariance structures. Biometrika

57: 239‑251. https://doi.org/10.1093/biomet/57.2.239

• Kline RB (1998) Principles and practice of structural equation modeling. First Edition.

Guilford Press, New York, NY, USA.

• Kline RB (2016) Principles and practice of structural equation modeling. Fourth Edition.

Guilford Press, New York, NY, USA.

• Larson DL, Grace JB (2004) Temporal dynamics of leafy spurge (Euphorbia esula) and

two species of flea beetles (Aphthona spp.) used as biological control agents. Biological

Control 29: 207‑214. https://doi.org/10.1016/S1049-9644(03)00156-7 

• Larson DL, Grace JB, Larson JL (2008) Long-term dynamics of leafy spurge (Euphorbia

esula) and its biocontrol agent, flea beetles in the genus Aphthona . Biological Control

47: 250‑256. https://doi.org/10.1016/j.biocontrol.2008.07.016 

• Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in R for

ecology, evolution, and systematics. Methods in Ecology and Evolution 7: 573‑579. 

https://doi.org/10.1111/2041-210X.12512 

• Lin LC, Huang PH, Weng LJ (2017) Selecting path models in SEM: A comparison of

model selection criteria. Structural Equation Modeling 24: 855‑869. https://doi.org/

10.1080/10705511.2017.1363652 

• Marsh HW, Hau KT, Wen Z (2004) In search of golden rules: Comment on hypothesis-

testing approaches to setting cutoff values for fit indexes and dangers in

overgeneralizing Hu and Bentler's (1999) findings. Structural Equation Modeling 11:

320‑341. https://doi.org/10.1207/s15328007sem1103_2 

• McShane BB, Gal D, Gelman A, Robert C, Tackett JL (2019) Abandon statistical

significance. American Statistician 73: 235‑245. https://doi.org/

10.1080/00031305.2018.1527253 

30 Grace J

https://doi.org/10.1111/2041-210X.12541
https://doi.org/10.1007/s00265-010-1029-6
https://doi.org/10.1007/s00265-010-1029-6
https://doi.org/10.1890/13-1066.1
https://doi.org/10.1890/14-1639.1
https://doi.org/10.1017/CBO9780511617799
https://doi.org/10.1002/ecy.2962
https://doi.org/10.1002/ecy.2962
https://doi.org/10.1080/10705519909540118
https://doi.org/10.1093/biomet/57.2.239
https://doi.org/10.1016/S1049-9644(03)00156-7
https://doi.org/10.1016/j.biocontrol.2008.07.016
https://doi.org/10.1111/2041-210X.12512
https://doi.org/10.1080/10705511.2017.1363652
https://doi.org/10.1080/10705511.2017.1363652
https://doi.org/10.1207/s15328007sem1103_2
https://doi.org/10.1080/00031305.2018.1527253
https://doi.org/10.1080/00031305.2018.1527253


• Mulaic S (2009) Linear causal modeling with structural equations. CRC Press, New

York, NY, USA. https://doi.org/10.1201/9781439800393 

• Murtaugh P (2014) In defense of P values. Ecology 95: 611‑617. https://doi.org/

10.1890/13-0590.1 

• Pearl J (2000) Causality. Cambridge University Press, Cambridge, UK.

• Schwarz G (1978) Estimating the dimension of a mode. The Annals of Statistics 6:

461‑464. https://doi.org/10.1214/aos/1176344136 

• Shipley B (2000) A new inferential test for path models based on directed acyclic

graphs. Structural Equation Modeling 7: 206‑218. https://doi.org/10.1207/

S15328007SEM0702_4 

• Shipley B (2013) The AIC model selection method applied to path analytic models

compared using a d‐separation test. Ecology 94: 560‑564. https://doi.org/

10.1890/12-0976.1 

• Shipley B (2016) Cause and correlation in biology. Second Edition. Cambridge

University Press, Cambridge, UK. https://doi.org/10.1017/CBO9781139979573 

• Shipley B, Douma JC (2019) Generalized AIC and chi‐squared statistics for path

models consistent with directed acyclic graphs. Ecology https://doi.org/10.1002/ecy.

2960 

• Smith M, Knapp A (2003) Dominant species maintain ecosystem function with non‐

random species loss. Ecology Letters 6: 509‑517. https://doi.org/10.1046/j.

1461-0248.2003.00454.x 

• Steiger JH (2007) Understanding the limitations of global fit assessment in structural

equation modeling. Personality and Individual Differences 42: 893‑989. https://doi.org/

10.1016/j.paid.2006.09.017 

• Tomer A (2003) A short history of structural equation models. In: Pugesek B, Tomer A,

von Eye A (Eds) Structural equation modeling: Applications in ecological and

evolutionary biology. Cambridge University Press, Cambridge, UK, 85-124 pp. https://

doi.org/10.1017/CBO9780511542138.005 

Supplementary material

Suppl. material 1: A 'Weight of Evidence' Approach to Evaluating Structural Equation

Models- Supplement1  

Authors:  Grace, JB

Data type:  R code

Brief description:  This text file contains the R code used to develop the demonstrations included

in Grace JB (2020) A 'weight of evidence' approach to evaluating structural equation models. One

Ecosystem

Download file (5.19 kb) 

 

A 'Weight of Evidence' approach to evaluating structural equation models 31

https://doi.org/10.1201/9781439800393
https://doi.org/10.1890/13-0590.1
https://doi.org/10.1890/13-0590.1
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1207/S15328007SEM0702_4
https://doi.org/10.1207/S15328007SEM0702_4
https://doi.org/10.1890/12-0976.1
https://doi.org/10.1890/12-0976.1
https://doi.org/10.1017/CBO9781139979573
https://doi.org/10.1002/ecy.2960
https://doi.org/10.1002/ecy.2960
https://doi.org/10.1046/j.1461-0248.2003.00454.x
https://doi.org/10.1046/j.1461-0248.2003.00454.x
https://doi.org/10.1016/j.paid.2006.09.017
https://doi.org/10.1016/j.paid.2006.09.017
https://doi.org/10.1017/CBO9780511542138.005
https://doi.org/10.1017/CBO9780511542138.005
https://doi.org/10.3897/oneeco.5.e50452.suppl1
https://doi.org/10.3897/oneeco.5.e50452.suppl1
https://doi.org/10.3897/oneeco.5.e50452.suppl1
https://doi.org/10.3897/oneeco.5.e50452.suppl1
https://arpha.pensoft.net/getfile.php?filename=oo_373240.txt

	Abstract
	Keywords
	Introduction
	Types of Evidence that can be Considered in Model Evaluation
	The Role of the Investigator in Model Evaluation and Selection
	Evidence Type #1: A Priori Scientific Knowledge
	Evidence Type #2: P-values
	Evidence Type #3: Global Fit Judged by Approximate Fit Indices
	Evidence Type #4: Modification Indices and Residual Relationships
	Evidence Type #5: Information Measures - AIC and BIC
	Evidence Type #6: d-separation Tests

	Proposed Sequence for a Weight-of-Evidence Approach to Model Evaluation and Selection
	An Ecological Example
	Illustration of a WOE Approach using the Biocontrol Example
	Model 1
	Model 2
	Model 3
	Step 8: Selection of Candidate Models for Comparison
	Step 9: Model Comparison, Weighing of Evidence and Model Selection
	Further Results for Selected Model, Model 3B

	Summary Thoughts and Future Directions
	Acknowledgements
	Hosting institution
	Conflicts of interest
	References
	Supplementary material

