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Abstract

The monitoring of  ecosystem dynamics utilises time and resources from scientists and

land-use managers, especially in wetland ecosystems in islands that have been affected

significantly by both the current state of oceans and human-made activities. Deep-learning

models  for  natural  and  anthropogenic  ecosystem type  classification,  based  on  remote

sensing data, have become a tool to potentially replace manual image interpretation. This

study proposes a U-Net model to develop a deep learning model for classifying 10 island

ecosystems with cloud- and shadow-based data using Sentinel-2, ALOS and NOAA remote

sensing data. We tested and compared different optimiser methods with two benchmark

methods, including support vector machines and random forests. In total, 48 U-Net models

were trained and compared. The U-Net model with the Adadelta optimiser and 64 filters
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showed the best result, because it could classify all  island ecosystems with 93 percent

accuracy  and  a  loss  function  value  of  0.17.  The  model  was  used  to  classify  and

successfully manage ecosystems on a particular island in Vietnam. Compared to island

ecosystems, it is not easy to detect coral reefs due to seasonal ocean currents. However,

the trained deep-learning models proved to have high performances compared to the two

traditional methods. The best U-Net model, which needs about two minutes to create a

new classification, could become a suitable tool for island research and management in the

future.
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Introduction

Currently, more than 100,000 islands have 500 million residents in total, encompass 20%

of global biodiversity and provide the according sustenance (Muñoz et al.  2013). Small

islands with an area under 10,000 km  are home to about 500,000 people (Liyun et al.

2018). According to the Millennium Ecosystem Assessment (MEA), island ecosystems are

isolated from inland areas and surrounded by a large area of water or sea. A sixth of the

Earth's surface is covered by island ecosystems and the oceans around them (MEA 2003).

These ecosystems also support more rare, endangered and vulnerable species than those

found on  the  mainland  (Balzan  et  al.  2018).  They  provide  both  terrestrial  and  marine

ecosystem  services  (Laurans  et  al.  2013).  However,  islands  are  amongst  the  most

susceptible locations on the planet to the effects of human activities and environmental

changes. Eighty percent of the recorded species extinctions occur on islands and they are

presently home to 45 percent of the world's endangered species (Mueller-Dombois 1992).

Consequently,  the  changes  in  island  ecosystems  have  received  great  attention  from

scientists in recent years (McLean et al. 2001, Laurans et al. 2013).

Improved earth observation and analytical skills have transformed our perspective on our

world, allowing for a more global perspective (Araujo et al. 2015, Kennedy et al. 2021),

which has the potential to have a profound impact on how humanity manages limited island

resources in particular (Laso et al. 2020). Several remote sensing sensor types have been

used to categorise natural and artificial ecosystems at various scales, including MODIS for

global  land use/cover  monitoring (Nichol  and Abbas 2015),  Sentinel-2 and Landsat  for

national/regional  monitoring  (Dang  et  al.  2020b)  and  Worldview  and  Planet  for  local

monitoring (Zhang et al. 2018). One obstacle is how remote sensing experts communicate

their  findings  to  potential  end-users  (island  managers,  policy-makers  and  conservation

practitioners). For example, it is necessary to discretise continuous data regarding coral

reefs cover into usable information, for example, for research, monitoring, planning and

management  (Kennedy  et  al.  2021).  An  automated  procedure  that  can  classify  island

ecosystems and monitor their changes, based on multi-temporal remote sensing data, can

be relevant and should be apparent, transparent and discoverable for the end-users.
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When using artificial  intelligence,  machine learning (ML) classify  information,  based on

stored knowledge and do the work without  any further assistance. Numerous research

projects  have used deep-learning methods to  identify  vegetation clusters,  emphasising

coastal and wetland habitats rather than island ecosystems (Dang et al. 2020b). Deep-

learning technology evolved as a reaction to the limitations of many computer programmes

and the world’s infinite complexity. One of the primary advantages in object classification

from remote sensing images has been to successfully identify real-world objects from a

vast  number  of  pixels.  Therefore,  image  classification  systems  have  often  relied  on

statistical classifiers that find characteristics (e.g. surface type or ground cover), based on

a variety  of  reflectance values across serveral  spectral  bands or  using preset  rules to

logically divide images into areas (Zhu et al. 2017). Nowadays, deep learning models using

remote sensing data (e.g. Sentinel-2, Landsat, Worldview and UAV) have been applied to

different land-use planning fields (Zhang et al. 2018). Various neural networks have been

applied in deep-learning processes, such as Support Vector Machine (SVM), Convolutional

Neural  Network  (CNN),  fully  convolutional  network  (FCN)  and  U-shaped  convolutional

neural  network (U-Net) (Zhu et  al.  2017).  The greatest challenge for the deep-learning

application  is  finding  out  which  data-learning  algorithms  are  needed  to  detect  image

features reliably, how many different training samples are needed and how variable is their

performance.

Additionally, the deep learning models for land-cover classification have been commonly

designed for inland or coastal ecosystems (Feng et al. 2019) and not for isolated islands

which  contain  different  dynamic  natural  ecosystems,  such  as  wetland  and  deep-sea

ecosystems.  Therefore,  developing  deep-learning  models  for  island  categorisation  is

becoming more relevant for scientists and managers (Hamylton et al. 2020). These deep-

learning-based models, which use both spatial and spectral data, are being evaluated as a

possible end-to-end solution for the categorisation of island ecosystems since they can

distinguish between objects impacted by water, waves, tides and currents.

This study aims to develop the most suited deep-learning models, based on the U-shape-

based neural network for classifying and monitoring ten ecosystems on a particular island

in Vietnam using Sentinel-2 images. This study addresses three issues related to deep-

learning-based ecosystem type classification on a particular island in Vietnam:

• What  are  the  benefits  to  use  deep-learning  models  for  island  ecosystem type

classification?

• How do U-Net  models  compare  to  traditional  models  in  island ecosystem type

classification?

• How were ecosystem types distributed on the Con Dao Island of Vietnam during

the last five years?

A  4-band  Sentinel-2  image  (including  red,  green,  blue  and  near-infrared)  and  digital

elevation  models  (DEMs)  were  utilised  as  input  data  for  the  U-Net  (basic)  models  to

categorise different island ecosystems. Land covers on an island in Vietnam of about 20

km x 25 km were built as a mask for training deep-learning models (Sections "study area"

and "input dataset preparation"). An accuracy comparison was made between the results
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obtained from the trained U-Net models and two benchmark techniques, namely Random

Forest (RF) and Support Vector Machine (SVM). Lastly, the new Sentinel-2 images taken

since 2017 were used to analyse changes in land cover on Con Dao Island, Vietnam.

Material and methods

Study Area

The Con Dao Island, which is a district of the Ba Ria-Vung Tau Province in the southeast of

Vietnam, approximately 187 km from Vung Tau City, was chosen as the study area (Fig. 1).

Con  Dao  Island  comprises  altogether  16  sub-islands  with  a  total  natural  area  of

approximately 76 km , the largest of which is Con Son Island (52 km ), which serves as

the  island  district's  economic,  political,  cultural  and  social  centre  (Hong Nguyen et  al. 

2014). Con Dao National Park has a high level of biodiversity, with many rare and valuable

species,  has  been  designated  as  a  Ramsar  site  and  is  a  member  of  the  Network  of

Important Sea Turtle Conservation Areas of  the Indian Ocean – Southeast Asia region

(IOSEA) (PPC 2019).

In addition to the typical habitats comprising woods, rivers, streams, lakes, sandbanks and

residential  areas,  the  study  area  also  includes  specific  ecosystems,  such  as  corals,

seagrasses, shallow seas and deep seas. The mangrove forest ecosystem on Con Dao

Island is narrow, with approximately 30 ha, located primarily on three sub-islands (PPC

2019). This ecosystem type can only develop in arc-shaped bays, which are exposed to a

few powerful  waves,  contain  dead  coral,  gravel  and  are  subjected  to  annual  alluvium

deposits. Therefore, the area of the mangrove ecosystems in this Island is smaller than

those in coastal areas. Secondly, coral reefs are located at most islands at a depth of 6-22

m, typically at around 6-8 m (PPC 2019). Thirdly, the seagrass ecosystem covers an area

of more than 1000 ha, is maintained by the Con Dao National Park and is primarily located

in two areas: Con Son and Dam Trau Bays (PPC 2019). The ecosystem of Con Dao may

be classified into terrestrial, wetland and marine ecosystem types (Tuan 2012). The forest

ecosystem is split into natural timber, mangrove and bamboo forests. Other habitats, such

as highland areca palm forests, sandy beaches and annual trees, are dispersed throughout

residential areas.

Based on remote sensing and GIS technology, Tuan (Tuan 2012) clarified that the size of

the forest area has not changed much during the last 20 years; only about 1.65% of the

islands’ area showed a decrease. The main reason is the expansion of the airport and the

water reservoir in the period from 1996 - 2000 (Hong Nguyen et al. 2014). In the 2020s,

tourism  development  was  identified  as  a  spearhead  economic  sector.  All  economic

activities of production and services are aimed at serving ecotourism development in an

effective and sustainable manner (Hong Nguyen et al. 2014). It is forecast that the increase

in population size and the number of tourists will lead to various pressures on local land-

use planning from 2021 to  2030 (PPC 2017).  Therefore,  it  is  necessary  to  develop a

monitoring system for ecosystem changes in Con Dao under the current socio-economic

development context.
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Input dataset preparation

The deep-learning model is set up based on three steps (Fig. 2). These are explained in

detail in this section, from data review and collection to training and testing models. The

best deep-learning models are compared with two traditional models before using them for

new predictions.

Three main steps to develop a U-Net model for island ecosystem type classification are

shown in Fig. 2. The digital elevation models (DEM) and tidal wave data were needed to

get started on the first step of separating the inland, offshore and coastal ecosystems and

to build new land-cover predictions (sections 2.4 and 2.5). Additionally, the DEM data were

used for separating cliffs with a slope steeper than 25 degrees. ALOS and NOAA satellite

data  of  seafloor  and  inland  elevations  of  medium  resolution  were  merged  with

topographical map data at 1:10000 scale. The ALOS sensor measured 30 metre elevation

data (so-called ALOS-DEM) with the use of the Panchromatic Remote Sensing Instrument

for Stereo Mapping (PRISM) that were collected, based on the use of the Google Earth

Engine programme (Mahdianpari et al. 2017). Due to the fact that ALOS-DEM data only

provide elevation information for terrestrial areas, the offshore relief was taken from the

NOAA data  (Kuo et  al.  2000).  A  90 metre  resolution  raster  for  the  offshore  area was

created using NOAA-DEM data that were projected at WGS84/UTM 48N and downscaled

Figure 1. 

Study area and ground control points on Sentinel-2 image obtained in 07/02/2019 in Con Dao

Island, Vietnam.
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to 30 m. In order to generate a complete DEM for both parts of the research area, the

authors used ArcGIS software to combine the NOAA-DEM data with the ALOS-DEM data.

Regarding  the  tide  level,  the  land-sea  boundary  can  be  identified  differently  on  the

Sentinel-2 image between high and low tide during a day. Due to the tides in the research

area fluctuating from 0.5-3.5 m, the boundary between land and sea can be identified in

the elevation data from -2 m to +2 m. It could be a large coastal area. Therefore, the tidal

information  is  also  collected  to  correct  the  boundary  between  inland  and  wetland

ecosystems  obtained  from  DEM  and  Sentinel-2.  According  to  the  metadata  of  the

Sentinel-2 images, seven images were taken at about 3:00 am. Meanwhile, the local tide at

that time is about 2.0-2.3 m. Therefore, it does not make a large change of coastline in the

seven images.

In addition to the cliff separation, based on ALOS and NOAA DEM data, the Sentinel-2

image obtained in February 2019 was integrated with the field mission in January 2021 to

identify nine other island ecosystem types with cloud and its shadow. The initial stage of

classification  was  image  segmentation,  based  on  the  pixel  using  eCognition  software

(Trimble 2018). The  segmentation  process  aimed  to  achieve  uniformity  in  each  image

object and a pair of adjacent objects were combined to reduce heterogeneity. However,

objects with different colours, structures and shapes were always classified as the same

type in some regions. Conversely, several objects with the same colours, structures and

shapes were included in the different categories. Therefore, it was necessary to integrate

the visual  interpretation with the auxiliary  data collected to increase the manual  island

ecosystem type classification accuracy.

Figure 2. 

The  structure  of  the  deep-learning  model  development  for  island  ecosystem  type

classification.
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Fieldwork was carried out in January 2021 at Con Dao Island, Ba Ria-Vung Tau Province,

to verify the visual interpretation that was done indoors. It is difficult to find a good-quality

Sentinel-2 image on an island due to the effects of the cloud and its shadow, especially a

suitable image in 2020. Therefore, the fieldwork has been done in January 2021 when the

image  obtained  in  April  2021  was  not  published.  To  improve  the  accuracy  during  the

fieldwork,  the  authors  worked  with  the  National  Park  managers  in  Con Dao Island  to

identify the stable area of ten island ecosystems during three years and then used them as

samples. The area with high changes in land cover was eliminated in the sampling. With

this method, the authors can identify correct samples in 2019. With the inland ecosystems,

the authors could access them easily. With the wetland ecosystems, the authors had to

use both boats and diving equipment for observation and sampling. Twenty polygons for

each island ecosystem types for image interpretation were randomly selected to assess

the accuracy, based on fieldwork samples. Each polygon was limited by the circular plots

with a radius of 40 m. In total, 180 polygons (20 polygons x 9 categories = 180 polygons)

were checked in the fieldwork and compared with the visual interpretation results from the

satellite  image  obtained  on  07/02/2019  (Fig.  1).  Fig.  3 shows  the  sampling  on  the

Sentinel-2 and the field image in January 2021. With the combination of natural colours,

the shallow water surface that is distributed along the coastline is easy to distinguish on

images with light tones, while deepwater surfaces have darker tones and are distributed

further  from  the  shallow  water  surfaces.  Two  ecosystem  types  (seagrass  and  sandy

dunes), which are located next to each other, are also distributed along the coast and have

a linear shape. Comparing the samples on the remote-sensing image analysis and in the

fieldwork, the authors differentiated these two ecosystem types, based on their luminosity.

The sandy dunes tend to reflect light more strongly than the seagrass.

In the study area, it is challenging to distinguish mangroves and corals on the images from

a pixel-based classification because their total area is so small and scattered. However,

these types of ecosystems are easily accessible in the field. Therefore, these types were

added to  the outcome of  the U-Net  model  after  the fieldwork.  For  natural  forests,  the

vegetation density is high, so the pixels in the image have a relatively uniform reflectance

spectrum with the tone of natural colours and the forest edges often have irregular shapes.

For residential areas, due to the appearance of many different objects, such as buildings,

gardens,  roads  and  parks,  the  reflection  spectrum is  not  uniform,  with  relatively  clear

boundaries. The spatial arrangement of the residential area manifests itself in the orderly

repetition of colour tones and similar structures.

Based on the main sample characteristics, the authors interpreted ecosystem types, based

on their colours, structures and shape from the segmentation process in the eCognition 

software (Trimble 2018). This process formed altogether 9546 polygons classified into 11

categories (nine inland ecosystems, cloud and shadow). Regions with the same colours,

structures and shapes have been combined into one ecosystem type. For areas with the

same colours, structures and shape, but different natural characteristics, we additionally

used higher resolution images like Google Earth or the land-use map. These more precise

results of this step are essential for developing the U-shaped Deep-Learning models in the

next steps.
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Setting up U-Net model for island ecosystem type classification

The basic U-Net architecture is a supervised learning algorithm, based on a Convolutional

Neural Network (CNN) to identify the classes of interest by modifying the parameters of

convolutional filters (Li et al. 2018). The term “U-Net” relates to its shape. It is similar to the

“U”  letter  with  three  main  parts,  including  contraction  (or  encoder),  bottle-neck  and

expansion  (or  decoder).  First,  it  does  not  use  any  fully  connected  layers  during  the

classification  process.  The  other  half  of  the  U-Net  provides  the  connection  between

features. From that, the U-Net could help to implement any size of input data. Second, the

U-Net  uses  the  padding  method,  which  allows  the  architecture  to  be  partitioned  into

completed images. This method is critical in segmentation due to its ability to avoid the

limitation of GPU memory in the classification process (Dang et al. 2020a). It explains why

the U-Net has been applied in various studies, including the research related to ecosystem

type classification.

The structure of the U-Net model for island ecosystem type classification is presented in

Fig. 4. The input image is passed in the encoder part by different blocks with two CNN

layers, a 3 x 3 kernel size and one 2 x 2 Max Pooling layer. The number of kernel and

feature maps is doubled after each block. It means that the spatial resolution of the input

image  is  decreased  and  the  spectral  resolution  of  the  input  image  is  increased.  This

Figure 3. 

The sample in the Sentinel-2 image take in February 2019 and the fields in January 2021 in

Con Dao, Ba Ria- Vung Tau Province.
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structure  can  support  the  efficient  learning  of  complex  features  (Zhang  et  al.  2018).

However, the most important part of the basic U-Net is focused on the expansion part (or

decoder). The encoder part also includes different blocks with two 3 x 3 CNN layers and

one 2 x 2 up-sampling layer. Nevertheless, each input image block can be added to the

feature  map  of  the  respective  encoder  to  keep  the  structure  of  features  during  the

regeneration process (Diakogiannis et al.  2020). It  should be noted that the number of

encoders  and  decoders  is  the  same.  In  this  study,  the  U-Net  model  for  the  island

ecosystem  type  classification  was  implemented  using  Python  and  the  Scikit-Learn

package. Numerous combinations of parameters were pre-defined, including the number of

filters, number of hidden layers, batch size and dropout probability, to obtain the optimal

parameters for the model. Besides, the number of iterations was also modified to avoid the

over-fitting  problem during  the  training  process.  The  results  were  compared  by  using

accuracy assessment indices such as Overall Accuracy, loss function and Kappa values.

Model optimisation

Based on the deep-learning approach, various methods have been used to optimise a U-

Net model,  such as the changes of  training size,  optimiser functions and loss function

(Carranza-García et al. 2019). This section describes all  alternative options to maximise

the total accuracy of the U-Net models. The training size and the number of filters were

changed in different loss functions and optimiser methods (see below). As the study area is

about 400 km , the input samples were fitted with three training size options of 64 x 64,

128 x 128 and 256 x 256. The number of filters was modified, respectively, from 8, 16, 32,

to 64.

2

Figure 4. 

The architecture of the basic U-Net used for island ecosystem type classification.
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Regarding the optimisation, various loss functions were considered in this study. In most

cases, the loss function has been used to calculate the quantity that the model should

attempt to minimise throughout the training process. The mean squared error function is

the most frequently used loss function in regression models, while the “cross entropy” loss

function  is  the  most  commonly  used  loss  function  in  classification  models,  based  on

probability calculations (Pasupa et al. 2020). As 11 land-cover objects were assigned an

integer value in  the model  before  they were translated to  the corrected names in  the

integration step of the U-Net models, the binary cross entropy was not appropriate. The

binary cross-entropy function is used to calculate the cross-entropy loss between actual

labels and forecast labels in binary data. Therefore, the “categorical cross-entropy” loss

function was selected for  the multi-island ecosystems.  Multi-class classification models

utilise this function type to assign a number or a one-hot code as the output label. The

Cross-Entropy loss value was estimated after running Softmax activation layers (Elfwing et

al.  2018).  Therefore,  it is  called  “Softmax  Loss".  The  “categorical  cross-entropy”  loss

function evaluates the performance of a model that generates a probability between 0 and

1, based on the following formula:

    (Formula 1)

where V  denotes the net's estimated scores for each class in 11 island ecosystem types

and V  denotes the network's estimated score for the positive class.

Different optimiser approaches may be used to build neural networks in order to reduce

their  related costs  (e.g.  loss of  data information,  training time and uncertainty).  In  this

study, four optimiser types were applied including Adaptive Moment Estimation (Adam),

Adaptive  Gradient  Algorithm  (Adagrad),  Adadelta  and  Stochastic  Gradient  Descent

algorithm (SGD) (Fig. 5) (Dang et al. 2020a). It was necessary to calculate the errors of the

trained models (or the loss function) on a continuous basis while running the optimisation

cycles. After each epoch, the weights of all trained U-Net models were adjusted in order to

reduce the size of the weight loss for the next assessment as much as possible. This figure

offers  a  high-level  summary  of  the  optimisation  techniques  that  have  been  previously

covered.  The  training  size  and  the  number  of  filters  were  modified  in  each  optimiser

method. Lastly, selecting the optimal optimiser technique is the most efficient method of

determining a model with the highest accuracy and the lowest loss function value.

Model comparison

In  order  to  assess  the  performance  of  all  trained U-Net  models  for  ecosystem

classification,  based on an object-based approach,  two traditional  models,  based on a

pixel-based approach were generated, including random forest (RF) and support vector

machine (SVM). As these two models were made, based on the pixel-based approach, the

optimiser parameters are also different from the U-Net models, as follows:

i

p
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Random Forest (RF)

Random Forest (RF) is a powerful algorithm in a supervised-learning class, based on the

predicted results of decision trees for resolving problems in classification and regression.

This algorithm was firstly introduced by Breiman and his group in 2001 (Breiman 1996). RF

allows combining (or ensembling) a large number of weak models to obtain better results

with a higher accuracy than a single model. Each sub-model (or each decision tree) in the

classification is assessed by a voting method to identify which one is the best model. In this

case, majority voting is commonly used (Lary et al. 2016). Other voting approaches were

also implemented in RF with lower frequency, such as veto and weighted voting methods.

Based on Tian et al. (2016) and Lary et al. 2016,the algorithm works in 4 steps:

1. Choose random samples from the dataset;

2. Create decision trees in the forest for each sample;

3. Vote for the predicted result; and

4. Return the decision tree with the most votes.

During the training process, the RF decreases the bias and increases the variance of the

model. From that, it avoids the over-fitting problem by passing the average of predictions

(Mahdianpari et al. 2017). This  is  one  of  its  main  advantages.  RF  also  allows  the

processing  of  the  missing  data  problem by  using  the  median of  adjacent  values.  The

performance of RF is affected by several parameters, such as max_features, n_estimators

and  min_sample_leaf.  The  selection  of  parameter  values  is  very  important  because  it

directly  relates  to  the  speed  and  the  accuracy  of  the  model.  The  higher  value  of

parameters will give the high accuracy. However, it also makes the model speed slower. In

addition, there will not be much change in accuracy when the parameters reach a certain

value. Therefore, we need to select an optimised value for parameters to have the balance

between accuracy and speed. In this study, the input data for the RF model that is similar

to  those  for  the  U-Net  models  was  encoded  through  100  trees  (n_estimators)  before

Figure 5. 

The four chosen optimisation algorithms to train parameters of the U-Net models for the island

ecosystem classification, adapted from Gulli  (2017), Iglovikov et al. (2017) and Alom et al.

2019.
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achieving the final model. The RF has a low memory performance because it has a large

number of decision trees, which require processing many times.

Support Vector Machine (SVM)

SVM, or Support Vector Machine, is a popular supervised-learning algorithm that was first

proposed in the 1970s (Karatzoglou et al.  2006). This algorithm has been applied in a

variety of applications in different fields, including chemistry (Houssein et al. 2020), biology

(Huo et al. 2020) and especially in Earth Science for remote sensing image classification

(Sabat-Tomala et al. 2020). This is an effective tool in high-dimensional computing space

with a low memory cost. The initial idea of SVM is to design an optimal hyper-plane (or the

maximal margin) to divide the destination dataset into a separated number of pre-defined

classes from the training dataset (Cervantes et al. 2020). In other words, the main goal of

SVM is to convert a set of data from the 2-dimensional space into a higher dimensional

space and split features into different groups. However, it becomes more difficult to analyse

the non-linear properties of data. The soft margin and kernel functions, which Vapnik and

Cortes established, were used to solve this limitation (Gopinath et al. 2020).

The performance of SVM highly depends on the selection of kernel functions because it

increases the flexibility in creating the decision boundaries of a dataset (Razaque et al.

2021). SVM has five kernel functions including linear, poly, RBF, sigmoid and precomputed.

The authors chose the RBF kernel function for this research because it is one of the most

widely  used kernels,  which has similarity  to  the Gaussian distribution and has a good

performance for image classification problems. Besides the kernel function, SVM has two

parameters,  which  affect  the  performance  of  the  model,  such  as  C  and  gamma.  The

gamma  parameter  allows  checking  how  far  the  influence  of  a  single  training  sample

reaches. The C parameter,  which is considered as a regularisation parameter of  SVM,

relates  to  the  correct  classification  of  training  samples  to  counteract  the  maximisation

margin of the decision function. The value of the two parameters needs to be optimised to

obtain  the  best  performance  during  the  SVM  development  process.  Commonly,  SVM

models can be optimised with a higher gamma value and lower C value. In this study, the

gamma value was selected at 0.2 and C value is 1.0. The input data samples for SVM are

similar to RF where it was divided into two arrays including values of attributes (or features)

and  values  of  labels  (or  observed  values).  In  which,  the  values  of  attributes  were

transformed to values in the range [0, 1] using the Min-Max Normalisation method to help

to increase the speed performance during the training process. We also applied K-Fold

cross-validation to evaluate the models with k = 10. The K-Fold cross-validation splits a

dataset  into  k  non-overlapping  folds. This  technique  will  allow  avoiding  the  overfitting

problem when training the models.

All  models  were  implemented  in  a  workstation  (Intel  Xeon  Silver  4112  2.6GHz;  Ram:

128GB DDR4 3200 MHz; Graphics: Nvidia Quadro RTX5000, 16GB, 4DP) using Python

programming language via TensorFlow and Scikit-Learn frameworks. After completing both

SVM and RF models, the results were compared with the best U-Net model to check the
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improvement  of  the  selected  deep-learning  models  for  the  island  ecosystem  type

classification.

Application of trained U-Net models for the island ecossytem type
classification

Once  the  optimal  U-Net  model for  the  classification  of  island  ecosystem  types  using

Sentinel-2 and DEM data have been established, its primary purpose was then to identify

ten  island ecosystem types with  cloud and its  shadow on new images.  This  research

project concentrated on ten habitats on the Con Dao Island. Six new Sentinel-2 images in

the specified region were selected for new interpretation across a three year period (2017,

2019 and 2021).  Additionally,  as described in  above sections,  data collection and pre-

processing were performed. As soon as the new picture was fed into the trained U-Net, the

model made use of the previously learned parameters to convert  the new images into

particular spatial matrices, creating intermediate matrices and to interpret the appropriate

classes for each pixel in the new image. All of these prediction methods are self-contained

and do not need additional training data.

Results

U-Net model performance

Based on the changes in the training size, the number of filters and optimiser methods, 48

U-Net  models were trained.  The total  accuracy and loss function values were used to

compare  the  performance of  these U-Net  models  (Table  1).  Accordingly,  the  accuracy

showed  an  upward  trend  with  increasing  filter  numbers.  Although  the  increase  in  the

training size did not express a clear trend in the loss and accuracy values, the training size

at 256 x 256 x 4 made a more accurate prediction in all cases of the optimier methods. In

four  types  of  optimiser  methods,  the  UNet-SGD  models  had  the  lowest  performance

compared to other methods. These models commonly provide an average loss value of

0.59 and an average accuracy of 75.1%.

No. Optimiser Size No. filters Loss ACC No. Optimiser Size No. filters Loss ACC

1 Adam 64 8 0.566 76.86 25 Adadelta 64 8 0.579 76.52

2 Adam 64 16 0.491 77.85 26 Adadelta 64 16 0.514 77.36

3 Adam 64 32 0.521 77.32 27 Adadelta 64 32 0.488 78.11

4 Adam 64 64 0.496 77.97 28 Adadelta 64 64 0.469 78.48

5 Adam 128 8 0.578 73.32 29 Adadelta 128 8 0.564 74.63

6 Adam 128 16 0.535 75.23 30 Adadelta 128 16 0.547 75.13

7 Adam 128 32 0.481 76.91 31 Adadelta 128 32 0.488 76.38

Table 1. 

Model performance of 48 trained U-Net models for island ecosystem type prediction.
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No. Optimiser Size No. filters Loss ACC No. Optimiser Size No. filters Loss ACC

8 Adam 128 64 0.497 76.11 32 Adadelta 128 64 0.442 78.21

9 Adam 256 8 0.509 76.19 33 Adadelta 256 8 0.516 75.71

10 Adam 256 16 0.427 79.51 34 Adadelta 256 16 0.469 77.37

11 Adam 256 32 0.374 81.95 35 Adadelta 256 32 0.456 78.33

12 Adam 256 64 0.436 77.78 36 Adadelta 256 64 0.167 93.36 

13 SGD 64 8 0.621 76.24 37 Adagrad 64 8 0.606 76.59

14 SGD 64 16 0.623 76.15 38 Adagrad 64 16 0.579 77.03

15 SGD 64 32 0.596 76.51 39 Adagrad 64 32 0.552 77.13

16 SGD 64 64 0.574 76.92 40 Adagrad 64 64 0.521 77.41

17 SGD 128 8 0.657 73.67 41 Adagrad 128 8 0.633 74.09

18 SGD 128 16 0.646 73.95 42 Adagrad 128 16 0.565 74.71

19 SGD 128 32 0.573 74.64 43 Adagrad 128 32 0.516 75.67

20 SGD 128 64 0.585 74.61 44 Adagrad 128 64 0.506 76.46

21 SGD 256 8 0.598 74.11 45 Adagrad 256 8 0.562 74.39

22 SGD 256 16 0.588 74.55 46 Adagrad 256 16 0.455 77.77

23 SGD 256 32 0.561 74.99 47 Adagrad 256 32 0.461 77.91

24 SGD 256 64 0.551 75.41 48 Adagrad 256 64 0.372 82.49 

Three U-Net models had an accuracy higher than 80%: the UNet-Adam-256-32, UNet-

Adadelta-256-64 and UNet-Adagrad-256-64 models. Especially, the UNet-Adadelta-256-64

model was assessed to have the highest performance with an accuracy of 93.36% and a

loss function value of 0.16 (Fig. 6 and Table 1). In general, the loss and accuracy values

were closely aligned. These values fluctuated during the first 30 epochs before converging

in  the  last  30  epochs.  The  faster  converging  process  can  be  found  in  the  UNet-

Adam-256-32  and  UNet-Adagrad-256-64  models.  The  UNet-Adadelta-256-64  model

provided a better prediction for some specific island ecosystem types compared to others.

Meanwhile,  the  prediction  performance  of  the  UNet-Adam-256-32  model,  although  it

achieved a total accuracy of 81.73%, can be balanced amongst all island ecosystem types.

Accuracy comparison

The accuracy of the island ecosystem type classification on Con Dao Island, based on the

interpretation of  five trained models is  shown in Fig.  7 and Table 2.  Accordingly,  most

inland ecosystems, as well as clouds and their shadows, were predicted similarly in all

three model  types.  The wetland ecosystems along coasts are different,  especially  with

coral reefs, shallow-water areas and deep-water areas. The Unet-Adadelta-256-64 model

detected most of the coral reefs, while the Unet-Adam-256-32 model only detected about

75%.  The  shallow-water  areas  were  interpreted  heterogeneously  by  the  Unet-

Adam-256-32  and  Unet-Adagrad-256-64  models,  whereas  the  distribution  of  this

ecosystem  type  seems  to  be  more  homogenous  in  the  interpretation  of  the  Unet-

Adadelta-256-64 model. In the results obtained from the two benchmark models, the coral
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reefs were not detected by the RF model. The residential areas were mixed with forest and

sandy dunes with the RF model result. Both benchmark models predicted that it is difficult

to separate deep-water areas from the deep sea. The differences between the results of all

U-Net models and the two benchmark models can be seen in the shallow water areas.

According to the benchmark models, this specific ecosystem type can be observed in the

eastern part of the Island, whereas all U-Net models interpreted its distribution around the

Island.

Sample

distribution 

Class accuracy 

Type No.

Samples 

UNet-

Adam-256-32 

UNet-

Adagrad-256-64 

UNet-

Adadelta-256-64 

SVM RF 

Ecosystem types 

Deep sea 997 97.4 97.8 99.4 98.5 97.2

Sandy dunes 962 74.8 76.0 79.5 77.5 26.8

Figure 6. 

The loss function and accuracy values of three trained U-Net models that achieved the highest

performance.

Table 2. 

The Cross-Validation of  three trained U-Net  models and two benchmark models for  the Island

ecosystem type classification.
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Sample

distribution 

Class accuracy 

Type No.

Samples 

UNet-

Adam-256-32 

UNet-

Adagrad-256-64 

UNet-

Adadelta-256-64 

SVM RF 

Seagrass 983 85.8 88.3 93.4 85.4 85.0

Residential area 939 80.9 80.4 90.4 76.3 19.2

Natural forest 990 97.4 97.2 98.6 97.8 97.2

Coral reefs 852 27.0 30.4 64.9 21.8 3.2

Shallow water area 992 77.6 85.0 98.7 59.1 48.1

Deep water area 990 38.1 61.3 95.3 4.4 0.0

Other types 

Cloud shadow 943 65.6 66.9 58.5 63.4 50.1

Cloud 982 85.8 86.3 87.8 83.1 75.3

Total 9,630 Overall accuracy (%) 

73.0 77.0 86.6 66.7 50.2

Kappa Coefficient 

0.7 0.8 0.9 0.6 0.5

The accuracy comparison between the three U-Net models and the two benchmark models

with new predictions is shown in Table 2. All three U-Net models can detect four types of

island ecosystem types: deep sea, seagrass, residential areas and natural forests. The

UNet-Adadelta-256-64 model is the best model for classifying most island ecosystem types

with a total accuracy of 86.6% and a Kappa index of 0.9. The two other U-Net models

Figure 7. 

The interpretation  results  of  Con Dao Island ecosystem types,  based on  satellite  data  in

27/02/2019 based on five models.

16 Dang K et al

https://arpha.pensoft.net/zoomed_fig/7607935
https://arpha.pensoft.net/zoomed_fig/7607935
https://arpha.pensoft.net/zoomed_fig/7607935


interpret  coral  reefs and deep-water  areas with a low accuracy.  In the two benchmark

models, the RF only achieved an accuracy of 50% with a Kappa index of 0.5. Although the

SVM can interpret seagrass and natural forest with an accuracy higher than 80%, it cannot

be used to interpret coral reefs and deep-water areas. Therefore, it is easy to confirm that

the  results  from  all  U-Net  models  have  a  higher  accuracy  than  those  from  the  two

benchmark models.

Island ecosystem changes in Con Dao Island

Fig.  8 depicts  the  distribution  of  ten  island  ecosystem types  on  the  Con  Dao  Island.

Besides the ten ecosystem types that were separated successfully, based on the UNet-

Adadelta-256-64 model, cliffs were identified, based on the DEM data with a slope higher

than 30 degrees. The speed at which one can interpret a full Sentinel-2 image is about 125

to 140 seconds. Clouds and their shadows were found in all Sentinel-2 images and were

then combined into one type. The mangrove and natural forests have been maintained or

have slightly decreased since 2017. The wetland ecosystems changed significantly due to

the effects of ocean currents and tide levels, especially in shallow-water (about 7-10%),

deep-water areas (about 10-14%) and others (about 2-4%). The ocean currents from the

north-eastern part of the Island in the dry season (from October to April)  have created

suitable conditions for seagrass and coral reefs to develop on the south-eastern side of the

Figure 8. 

Island  ecosystem  classification  from  ALOS  and  NOAA  DEM  data  and  multi-temporal

Sentinel-2 images, based on the UNet-Adadelta-256-64 model.
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Island. Sand dunes and residential  areas are also stable on this side. The area of the

deep-water  regions  have  increased  significantly  in  July  and  different  high-slope  cliffs

developed along the north-western side.

Discussion

Comparison with formal networks/frameworks

It is worthwhile to have a tool that suits the specific needs of different stakeholders (e.g.

land  managers).  This  research  project  developed  different  deep-learning  models  to

interpret ten different inland and offshore ecosystem types on the famous Island of Con

Dao,  Vietnam.  As  island  ecosystems are  commonly  affected  by  both  local  and  global

climates, especially by storms and waves, the land cover of all ecosystems can change

rapidly  during  rainy  and  dry  seasons.  Previous  studies  have  already  developed

classification models for inland and coastal  wetland ecosystems; however,  some island

ecosystems, such as coral reefs and seagrass, were not identified. The addition of these

two  ecosystems  in  the  trained  models  can  meet  the  needs  of  island  managers.  In

comparison,  generating  an  island  land-cover  map  using  conventional  interpretation

techniques with actual field samples may take considerable time. Meanwhile, the UNet-

Adadelta-256-64 model can effectively and quickly interpret ten different island ecosystem

types, clouds and their shadows from recent satellite images using training weight and

calibration results contained in the trained model.

In addition to the former inland ecosystems, clouds with their shadows and seven wetland

ecosystem types, based on the RAMSAR and MONRE classification systems, were added

to the trained models. The addition of seven wetland ecosystem types is the first difference

in comparison to all other models that were developed in previous studies (Pouliot et al.

2019,  Dang  et  al.  2020a).  Previous  studies  mainly  explored  methods  and  models  to

describe  wetlands,  rather  than  why  their  findings  matched  the  wetland  categorisation

systems and how to implement their findings in practice. In this study, the preparation for

all U-Net models, training and testing steps, based on the remote sensing images, were

explained in detail. Secondly, as an additional function compared to the traditional models,

all trained U-Net models can specifically separate clouds and their shadows, as well as

objects covering natural and anthropogenic ecosystems in all islands. It is easy to collect

Sentinel-2 or Landsat images without clouds and shadows for inland or coastal areas, but it

becomes more complex for islands due to the effects of weather and terrain. For example,

on most islands, the clouds and their shadows are near high mountains even in summer.

Therefore, it  is necessary to add them to the island cover interpretation models. Cloud

cover affects the availability  of  useable satellite data in the study region by preventing

optical sensors from acquiring high-quality images of the island ecosystem types. The sky

varies significantly in terms of cloud and surface brightness an, in certain instances, it is

hard to differentiate between white clouds and bright land, mainly if  the land surface is

covered with sand. Following that, hazy cloud boundaries and thin clouds obscure ground

surfaces, creating ambiguity and making the data harder to interpret. Furthermore, cloud

shadows may be combined with darkened, moist soil,  water and other dark objects. All
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these issues influence the interpretation of the cloud and its shadow objects in the trained

models. This issue has reduced the accuracy of the models for interpreting these objects to

about 80%.

Improvement of island ecosystem type classification models

As the  research  area  is  a  small  island,  where  the  training  and  testing  samples  were

collected in one year, the U-Net models could not clearly detect coral reefs, mangroves or

sandy dunes. All  islands are affected by currents waves and annual storms, leading to

partly dramatic changes in the offshore sediments and climate. In particular, coral reefs can

develop in waters with temperatures ranging from 20-32°C. During the rainy season, they

can easily vanish when a wave or current containing offshore sediments flows over them,

converting them to shallow water cover. Meanwhile, the mangrove ecosystems commonly

develop in coastal areas. Therefore, the areas of coral reefs and mangroves observed on

islands are rather small. As a powerful function of deep-learning methods, all U-Net models

enable developers to update trained models with new data in order to build more accurate

models.  When  more  samples  are  available,  sophisticated  models  may  predict  more

accurately the kind of island ecosystem and offer more management choices. The multi-

temporal remote sensing data can be used in this step to optimise the total accuracy, as

well as the accuracy of coral reef interpretation. As the area of mangrove ecosystems is

too small in the research area, it is necessary to collect more mangrove samples in coastal

areas. However, the addition of coastal mangroves can improve the variety between the

island and coastal ecosystem types. Therefore, to improve this issue, we think the SAR

data from Sentinel-1  or  data  related to  sea surface topography,  sea and land surface

temperature and ocean and land surface colour, calculated from Sentinel-3, can improve

the interpretation of mangrove and coral reefs. However, they all  are new sensors and

require more research in the future. Some application of SAR data for analysing climatic

condition was also mentioned in different Data Cube in European and Asian countries and

can correct the distribution of mangrove and coral reefs. However, the resolution of these

data is still low. The high-resolution images obtained, for instance, from Lidar or unmanned

aerial vehicles (UAVs) can also be used to monitor this specific ecosystem in the future.

The development of 48 U-Net models for island ecosystem categorisation is expensive and

time-consuming. A CPU Intel (R) Xeon (R) CPU @ 2.6GHz with 32GB RAM and a GPU

NVIDIA GeForce GTX1070 were built for this study. Each U-Net model took from 30 to 40

seconds  to  train  each  epoch.  Additionally,  each  RF  and  SVM  model  takes  60  to  70

seconds to train, on average. Even though it takes a while to train a U-Net model, fresh

data may be used to update a learned model.  Future U-Net models may benefit  from

adopting other optimisation methods, such as evolutionary or swarm intelligence, in place

of a traditional optimisation method; or using fresh multi-spectral satellite image data to

gain additional  knowledge.  High-resolution data may be used with a supercomputer  to

quickly interpret all kinds of (island) ecosystem types.
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Conclusions

This study demonstrated the benefits of combining deep-learning and remote-sensing data

for monitoring island ecosystem types. Besides interpreting new satellite images in any

coastal  region  at  any  moment,  the  UNet-Adadelta-256-64  model  was  developed  to

interpret  the  distribution  of  ten  island  ecosystem  types,  as  well  as  clouds  and  their

shadows. The accuracy of the model reached 93%, with a loss function value of 0.16. The

best-trained U-Net model was utilised to effectively identify the island ecosystem types on

Con Dao Island within six years using Sentinel-2 data. A total of 11 different ecosystem

types  was  found  on  Con  Dao  Island.  Besides  comparably  common ecosystem types,

characteristic coral reefs and seagrass can be found surrounding the Island, whereas the

distribution of the shallow water ecosystems depends on the season and currents. After

five years, the mainland ecosystems have not changed, except for residential areas due to

urbanisation.  Land-use  managers  could  use  the  data  and  approaches  to  monitor

ecosystem dynamics on islands every season instead of using traditional methods that

assess changes every five years. It may be possible to retrain the model with additional

samples in the future and use it to categorise ecosystems on other islands.
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